scholarly journals Performance Analysis of IRS-Aided NOMA Communications in the Presence of Imperfect SIC

2021 ◽  
Vol 21 (5) ◽  
pp. 341-350
Author(s):  
Van Phu Tuan ◽  
Ic-Pyo Hong

The intelligent reflecting surface (IRS) is expected to be a promising technique to achieve a robust spectrum and energy efficiency. This paper investigates the advantages of IRS in enhancing performance of non-orthogonal multiple access (NOMA) communications in the presence of imperfect successive-interference-cancellation (SIC) and phase distortion (PD) caused by a non-ideal IRS. Specifically, average achievable rates (AARs) of the users are the target performance metrics. For performance evaluation, the probabilistic characterizations of signal-to-interference-plus-noise ratios (SINRs) at the users are studied. These results allow for deriving the theoretical formulas for the AAR. Monte Carlo simulations are adopted to verify the accuracy of these theoretical results. The numerical results show the effects of various key system parameters, such as source transmit power, NOMA power allocation (PA) factors, reflecting tile (RTs) allocation, the SIC imperfection factor, and the PD factor, on the AAR that provide useful information for the system’s design.

2021 ◽  
Author(s):  
Ankur Bansal ◽  
Keshav Singh ◽  
Bruno Clerckx ◽  
Chih-Peng Li ◽  
Mohamed-Slim Alouini

Intelligent reflecting surface (IRS) has recently emerged as a promising technology for 6G wireless systems, due to its capability to reconfigure the wireless propagation environment. In this paper, we investigate a Rate-Splitting Multiple Access (RSMA) for IRS-assisted downlink system, where the base station (BS) communicates with single-antenna users with the help of an IRS. RSMA relies on rate-splitting (RS) at the BS and successive interference cancellation (SIC) at the users and provides a generalized multiple access framework. We derive a new architecture called IRS-RS that leverages the interplay between RS and IRS. For performance analysis, we utilize an \textit{on-off control technique} to control the passive beamforming vector of the IRS-RS and derive the closed-form expressions for outage probability of cell-edge users and near users. Moreover, we also analyze the outage behavior of cell-edge users for a sufficiently large number of reflecting elements. Additionally, we also analyze the outage performance of cooperative RS based decode-and-forward (DF)-assisted framework called DF-RS. Through simulation results, it is shown that the proposed framework outperforms the corresponding DF-RS, RS without IRS and IRS-assisted conventional non-orthogonal multiple access (NOMA) schemes. Furthermore, the impact of various system's parameters such as the number of IRS reflecting elements and the number of users on the system performance is revealed.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3436
Author(s):  
Mariem Hmila ◽  
Manuel Fernández-Veiga ◽  
Miguel Rodríguez-Pérez ◽  
Sergio Herrería-Alonso

Non-orthogonal multiple access (NOMA) techniques have emerged in the past years as a solution to approximate the throughput performance of wireless communications systems to their theoretical capacity region. We consider in this paper an optimization-based model for multicast device-to-device (MD2D) communications where the channels are not orthogonal and may be (partially or fully) shared among the transmitters in each cluster. This setting leads naturally to the introduction of NOMA transmitters and receivers who use successive interference cancellation (SIC) to separate the superposed signals. To analyze the role of NOMA in MD2D, its performance impact, potential performance gains and possible shortcomings, we formulate a model that includes SIC operations in the decoders, so that higher rates can be attained when several sources transmit on the same channel(s). We also investigate the energy efficiency of the network (global and max-min) through a dynamic power control algorithm and present a centralized and a semi-distributed solution to these optimization problems. Through numerical simulations, we show that NOMA is able to improve both the sum-rate and the max-min rate of a MD2D network even from a small degree of resource sharing. Furthermore, these gains also improve the global energy efficiency on the network, but not always the max-min energy efficiency of the devices.


2020 ◽  
Vol sceeer (3d) ◽  
pp. 152-156
Author(s):  
Ali Marzook ◽  
Hayder Mohammed ◽  
Hisham Roomi

Non-Orthogonal Multiple Access (NOMA) has been promised for fifth generation (5G) cellular wireless network that can serve multiple users at same radio resources time, frequency, and code domains with different power levels. In this paper, we present a new simulation compression between a random location of multiple users for Non-Orthogonal Multiple Access (NOMA) and Orthogonal Multiple Access (OMA) that depend on Successive Interference Cancellation (SIC) and generalized the suggested joint user pairing for NOMA and beyond cellular networks. Cell throughput and Energy Efficiency (EE) are gained are developed for all active NOMA user in suggested model. Simulation results clarify the cell throughput for NOMA gained 7 Mpbs over OMA system in two different scenarios deployed users (3 and 4). We gain an attains Energy Efficiency (EE) among the weak power users and the stronger power users.


Electronics ◽  
2019 ◽  
Vol 8 (6) ◽  
pp. 695 ◽  
Author(s):  
Suyue Li ◽  
Anhong Wang ◽  
Jie Liang

The precise error performance analysis is challenging for non-orthogonal multiple access (NOMA) systems due to nonlinear successive interference cancellation (SIC) processing among NOMA users. In this paper, the pairwise error probability (PEP) performance of different users is investigated for relay NOMA simultaneous wireless information and power transfer (SWIPT) systems. By employing the order statistics theory, we obtain the ordered probability density function of the cascaded channel through Source-to-Relay-to-User links. Then we derive the analytical closed-form PEP expressions for NOMA users. To obtain the approximate closed-form PEP, we explore the finite series representation of the power of the modified Bessel function to replace the integrand terms. Monte Carlo simulation results show that the approximate analytical PEP of each user is basically in agreement with the simulated PEP. Furthermore, on the basis of the closed-form PEP, the influence of relevant system parameters on the error performance is examined via numerical simulations, which manifests that the choice of power allocation coefficients should be balanced between the users’ channel conditions and the demanded quality of service.


2021 ◽  
Author(s):  
Nithin Babu ◽  
Constantinos B. Papadias ◽  
Petar Popovski

<div>In this work, we propose a methodology for the energy-efficient placement of an unmanned aerial system (UAS) deployed to collect data from a set of ground user equipments (UEs). The data-communication between the UEs and the UxNB, a radio access node carried by an unmanned aerial vehicle (UAV), of the UAS follows a non-orthogonal multiple-access (NOMA) scheme; in which all the UEs share the same time and frequency resources. The receiver removes the inter-UE interference from the co-channel UEs through joint implementation of a powerreduction technique at the UEs and the successive interference cancellation (SIC) at the receiver. Firstly, a new energy-efficiency metric, area energy efficiency (AEE) representing the total area covered by a UxNB per Watt-Hour (Wh) of energy consumed, is introduced. Then, the optimal hovering altitude of the UxNB that maximizes the AEE is determined using the proposed algorithm. Numerical evaluations show that the obtained solution using the proposed algorithm matches the globally optimal solution, and the proposed NOMA scheme prevails over an equivalent orthogonal multiple access (OMA) scheme, in terms of the AEE.</div>


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 237 ◽  
Author(s):  
Mohammed S. Al-kahtani ◽  
Lilatul Ferdouse ◽  
Lutful Karim

This paper examines the resource block and power allocation in the power domain non-orthogonal multiple access (PD-NOMA) based cellular device-to-device (D2D) systems. To improve the energy efficiency of the D2D systems and to manage the mutual interference level as well as the quality of service (QoS) requirement of cellular users, different power level is applied to the D2D users sharing the same resource blocks (RBs) to the legacy users. It is essential to design an efficient resource block and power allocation method for PD-NOMA based cellular D2D systems which guarantee the successive interference cancellation (SIC) order in the power allocation solution. In this paper, we propose an iterative algorithm of resource block and power allocation for cellular D2D system which incorporates the SIC aware geometric water filling (GWF) method in the power allocation solution. It is shown that the proposed SIC aware geometric water filling achieves higher energy efficiency compared to iterative water-filling (IWF) power allocation and the GWF based orthogonal multiple access (OMA) method.


Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 89 ◽  
Author(s):  
Vishaka Basnayake ◽  
Dushantha Nalin K. Jayakody ◽  
Vishal Sharma ◽  
Nikhil Sharma ◽  
P. Muthuchidambaranathan ◽  
...  

Energy efficiency is a major concern in the emerging mobile cellular wireless networks since massive connectivity is to be expected with high energy requirements from the network operators. Non-orthogonal multiple access (NOMA) being the frontier multiple access scheme for 5G, there exists numerous research attempts on enhancing the energy efficiency of NOMA enabled wireless networks while maintaining its outstanding performance metrics such as high throughput, data rates and capacity maximized optimally.The concept of green NOMA is introduced in a generalized manner to identify the energy efficient NOMA schemes. These schemes will result in an optimal scenario in which the energy generated for communication is managed sustainably. Hence, the effect on the environment, economy, living beings, etc is minimized. The recent research developments are classified for a better understanding of areas which are lacking attention and needs further improvement. Also, the performance comparison of energy efficient, NOMA schemes against conventional NOMA is presented. Finally, challenges and emerging research trends, for energy efficient NOMA are discussed.


2021 ◽  
Author(s):  
Nithin Babu ◽  
Constantinos B. Papadias ◽  
Petar Popovski

<div>In this work, we propose a methodology for the energy-efficient placement of an unmanned aerial system (UAS) deployed to collect data from a set of ground user equipments (UEs). The data-communication between the UEs and the UxNB, a radio access node carried by an unmanned aerial vehicle (UAV), of the UAS follows a non-orthogonal multiple-access (NOMA) scheme; in which all the UEs share the same time and frequency resources. The receiver removes the inter-UE interference from the co-channel UEs through joint implementation of a powerreduction technique at the UEs and the successive interference cancellation (SIC) at the receiver. Firstly, a new energy-efficiency metric, area energy efficiency (AEE) representing the total area covered by a UxNB per Watt-Hour (Wh) of energy consumed, is introduced. Then, the optimal hovering altitude of the UxNB that maximizes the AEE is determined using the proposed algorithm. Numerical evaluations show that the obtained solution using the proposed algorithm matches the globally optimal solution, and the proposed NOMA scheme prevails over an equivalent orthogonal multiple access (OMA) scheme, in terms of the AEE.</div>


2021 ◽  
Author(s):  
Ankur Bansal ◽  
Keshav Singh ◽  
Bruno Clerckx ◽  
Chih-Peng Li ◽  
Mohamed-Slim Alouini

Intelligent reflecting surface (IRS) has recently emerged as a promising technology for 6G wireless systems, due to its capability to reconfigure the wireless propagation environment. In this paper, we investigate a Rate-Splitting Multiple Access (RSMA) for IRS-assisted downlink system, where the base station (BS) communicates with single-antenna users with the help of an IRS. RSMA relies on rate-splitting (RS) at the BS and successive interference cancellation (SIC) at the users and provides a generalized multiple access framework. We derive a new architecture called IRS-RS that leverages the interplay between RS and IRS. For performance analysis, we utilize an \textit{on-off control technique} to control the passive beamforming vector of the IRS-RS and derive the closed-form expressions for outage probability of cell-edge users and near users. Moreover, we also analyze the outage behavior of cell-edge users for a sufficiently large number of reflecting elements. Additionally, we also analyze the outage performance of cooperative RS based decode-and-forward (DF)-assisted framework called DF-RS. Through simulation results, it is shown that the proposed framework outperforms the corresponding DF-RS, RS without IRS and IRS-assisted conventional non-orthogonal multiple access (NOMA) schemes. Furthermore, the impact of various system's parameters such as the number of IRS reflecting elements and the number of users on the system performance is revealed.


2021 ◽  
Author(s):  
Ankur Bansal ◽  
Keshav Singh ◽  
Bruno Clerckx ◽  
Chih-Peng Li ◽  
Mohamed-Slim Alouini

Intelligent reflecting surface (IRS) has recently emerged as a promising technology for 6G wireless systems, due to its capability to reconfigure the wireless propagation environment. In this paper, we investigate a Rate-Splitting Multiple Access (RSMA) for IRS-assisted downlink system, where the base station (BS) communicates with single-antenna users with the help of an IRS. RSMA relies on rate-splitting (RS) at the BS and successive interference cancellation (SIC) at the users and provides a generalized multiple access framework. We derive a new architecture called IRS-RS that leverages the interplay between RS and IRS. For performance analysis, we utilize an \textit{on-off control technique} to control the passive beamforming vector of the IRS-RS and derive the closed-form expressions for outage probability of cell-edge users and near users. Moreover, we also analyze the outage behavior of cell-edge users for a sufficiently large number of reflecting elements. Additionally, we also analyze the outage performance of cooperative RS based decode-and-forward (DF)-assisted framework called DF-RS. Through simulation results, it is shown that the proposed framework outperforms the corresponding DF-RS, RS without IRS and IRS-assisted conventional non-orthogonal multiple access (NOMA) schemes. Furthermore, the impact of various system's parameters such as the number of IRS reflecting elements and the number of users on the system performance is revealed.


Sign in / Sign up

Export Citation Format

Share Document