Pan-African Magmatism: Geochemical Evolution and Uranium Mineralization of Granitoid Rocks, Southeastern Desert, Egypt

2003 ◽  
Vol 45 (2) ◽  
pp. 157-175 ◽  
Author(s):  
Gehad M. Saleh ◽  
Farid M. Makroum
2021 ◽  
Vol 19 (1) ◽  
pp. 29-39
Author(s):  
Young Ezenwa Obioha

Geochemistry of schists of Obudu area was carried out using ICP-MS and ICP-ES techniques in order to determine the geochemical evolution of the area. 40 samples were analyzed for their major, trace and REE composition. Field mapping revealed that gneisses, amphibolites and schists comprising migmatitic schists (MS), quartz-mica schists (QMS), garnet-mica schists (GMS), and hornblende biotite schists (HBS), intruded by granites, granodiorites, quartzofeldspathic rocks and dolerites occur in the area. Structural studies revealed that the schists trend approximately NE–SW (5 – 30o ) indicating the Pan-African event. Modal analysis revealed that the schists have average concentration of quartz (15vol.%), plagioclase (An45-19 vol.%), biotite (15vol.%), garnet (9.0vol.%) and muscovite (6vol.%), the remaining consists of accessory minerals. Geochemistry showed that all the schists have molecular Al2O3 > CaO+K2O+Na2O, indicating they are peraluminous metasedimentary pelites. Trace and REE element results show that all the analyzed schist samples are depleted in Hg, Ag, Be, Bi, and Sb below < 1.0ppm, but relatively enriched in Ba, Sr and Zr with average concentration of 996, 675.73, 243.13 ppm respective. The HREE are depleted with ΣHREE < 10.2, but the LREE are relatively enriched with ΣLREE > 289.54. The ΣLREE/ΣHREE ratio ranges from 9.17 to 33.4, with a large positive delta V at Eu. These findings indicate that the schists of Northwest Obudu area are highly fractionated and had attained at least the uppermost amphibolite metamorphic grade. The schists had contributed to the development of the Pan-African continent.


1981 ◽  
Vol 44 (336) ◽  
pp. 371-378 ◽  
Author(s):  
Keith Bell

AbstractAssessment of available geochronological information, as well as new whole-rock Rb-Sr data from several granitoid rocks of Saskatchewan, shows a close relationship between magmatic-metamorphic events in the Hudsonian orogen and uranium mineralization. Most uranium deposits lie to the west of the Needle Falls Shear Zone and occur as either: (i) vein-type deposits or (ii) unconformity-type deposits close to the contact between the Athabasca sediments and their basement. At least two metamorphisms have affected the pre-Athabasca rocks: the Kenoran at about 2500 Ma ago, and the more pervasive ‘main’ Hudsonian event at 1740 Ma. A much younger thermal event (perhaps associated with uplift and cooling) at 1540 Ma is also indicated. The post-Kenoran K-Ar dates suggest prolonged thermal activity from about 1900 Ma through to about 1500 Ma ago. Granitoid events at 1870 Ma and 1740 Ma ago are outlined by both U-Pb zircon and Rb-Sr whole-rock isochron data. Whole-rock Rb-Sr data from the unmetamorphosed Athabasca sediments suggest an approximate depositional age of 1450±50 Ma, a figure that is consistent with the age of the underlying Hudsonian basement and the truncation of the sediments by the Cree Lake diabase dyke swarm at about 1200–1300 Ma ago. Although several episodes of uranium deposition have been documented, the main ones seem to have occurred at 1860 Ma (syngenetic uraninite in pegmatites), 1740 Ma (the Beaverlodge vein-type deposits) and between 1300 and 800 Ma (the epigenetic uranium of the unconformity-type deposits). Whereas the two earlier episodes can be correlated with periods of either magmatic or metamorphic activity, the late Proterozoic episodes cannot. The close agreement between the age of the Cree Lake dyke swarm and the late Proterozoic mineralization suggests that at about 1300 Ma ago possible hydrothermal activity from relatively deep-seated fractures may have been responsible for the solution and transportation of the uranium of the unconformity-type deposits. The period 1300 Ma to about 900 Ma, in other parts of the Canadian Shield, was a time of crustal rifting, basic magmatism, carbonatite activity, and intense deformation. Prior to the deposition of the Athabasca sediments uranium was concentrated by Hudsonian magmatic and metamorphic processes whereas subsequently, transportation and intermittent deposition of the unconformity-type deposits were related to fairly long-lived, low-temperature hydrothermal activity.


Lithos ◽  
2017 ◽  
Vol 278-281 ◽  
pp. 195-214 ◽  
Author(s):  
Fangyang Hu ◽  
Shuwen Liu ◽  
Mihai N. Ducea ◽  
Wanyi Zhang ◽  
Zhengbin Deng

Sign in / Sign up

Export Citation Format

Share Document