Reliability of a Bridge Subjected a Multi-Hazard: Scour and Earthquakes

Author(s):  
Berenice A. Olvera Ramírez ◽  
Bertha Olmos ◽  
José Manuel Jara

<p>Bridges are important structures for being part of the economic-social system of a country, for that is important to quantify their probability of damage. They are important structures for being part of the economic-social system of a country, for that is important to quantify their probability of damage. The objective of this work is to determine the failure probability of a real bridge accounting for the multi-hazard by estimating fragility curves where the capacity is assessed with static nonlinear analyses, and the hydraulic and seismic demands are characterized with probabilistic models. The bridge’s probability of failure is calculated using MonteCarlo simulations.</p>

Author(s):  
Ryota Tsubaki ◽  
Koji Ichii ◽  
Jeremy D. Bricker ◽  
Yoshihisa Kawahara

Abstract. Fragility curves evaluating risk of railway track ballast and embankment fill scour were developed. To develop fragility curves, two well-documented single-track railway washouts during two recent floods in Japan were investigated. Type of damage to the railway was categorized into no damage, ballast scour, and embankment scour, in order of damage severity. Railway overtopping surcharge for each event was estimated via hydrologic and hydraulic analysis. Normal and log-normal fragility curves were developed based on failure probability derived from field records. A combined ballast and embankment scour model was validated by comparing the spatial distribution of railway scour with the field damage record.


Author(s):  
Hoang Nam Phan ◽  
Fabrizio Paolacci ◽  
Silvia Alessandri ◽  
Phuong Hoa Hoang

Liquid steel storage tanks are strategic structures for industrial facilities and have been widely used both in nuclear and non-nuclear power plants. Typical damage to tanks occurred during past earthquakes such as cracking at the bottom plate, elastic or elastoplastic buckling of the tank wall, failure of the ground anchorage system, and sloshing damage around the roof, etc. Due to their potential and substantial economic losses as well as environmental hazards, implementations of seismic isolation and energy dissipation systems have been recently extended to liquid storage tanks. Although the benefits of seismic isolation systems have been well known in reducing seismic demands of tanks; however, these benefits have been rarely investigated in literature in terms of reduction in the probability of failure. In this paper, A vulnerability-based design approach of a sliding concave bearing system for an existing elevated liquid steel storage tank is presented by evaluating the probability of exceeding specific limit states. Firstly, nonlinear time history analyses of a three-dimensional stick model for the examined case study are performed using a set of ground motion records. Fragility curves of different failure modes of the tank are then obtained by the well-known cloud method. In the following, a seismic isolation system based on concave sliding bearings is proposed. The effectiveness of the isolation system in mitigating the seismic response of the tank is investigated by means of fragility curves. Finally, an optimization of design parameters for sliding concave bearings is determined based on the reduction of the tank vulnerability or the probability of failure.


Author(s):  
Philippe Cambos ◽  
Guy Parmentier

During ship life, operating conditions may change, tanker may be converted into FPSO, and flag requirements may be modified. Generally these modifications have few impacts on existing structures; flag requirements only rarely are to be applied retroactively. Nevertheless in some cases modifications of operating condition may induce considerable consequences, making in the worst cases impossible any reengineering. For example converting a common tanker, built with plain steel of grade A into an Offshore Floating Unit able operating in cold region, may require a grade change corresponding to a grade B. It is obviously meaningless to replace all material just because material certificates. Steels used by shipyards have to fulfill Classification society’s requirements dealing with mechanical strength; generally shipbuilding corresponds to a small part of steelmaker’s production. For this reason steelmakers are reluctant to produce steels with mechanical properties corresponding exactly to the minima required. They generally deliver steels already in stock, with higher mechanical characteristics than required. In this case it can be taken advantage of this common practice. In order to demonstrate that the material fulfill the requirements of grade B it has been decided to adopt a statistic approach. At this stage there are two main issues, the first one is that it is needed to provide evidences that the actual material Charpy V characteristics fulfill the requirements of grade B; the second one is to provide these evidences with a minimum testing. To assess this assumption a random check has been carried out. Different probabilistic model have been tested in order to check common approaches and probabilistic model based on physical considerations. In the paper the main assumptions for estimating the minimum Charpy value main assumption in the probabilistic models are recalled, the behavior of empirical sample is examined, the parameters of probability laws fitting the empirical distribution and definitely as accuracy of probability law parameters determination is not perfect with a finite number of specimens the uncertainty in the determination of parameters is taken into account with confidence limits. According to the selected probabilistic model the minimum value corresponds to an acceptable probability of failure, taking into account the target confidence level, or is independent of any acceptable probability of failure and is defined with the same confidence level. At the end it is concluded that a random check with a data treatment assuming a random distribution of Charpy V test results distributed according to a Weibull probability law of the minimum allows providing evidences that with a sufficient confidence level the steel used for the considered structure fulfill the requirements of the new operating conditions.


2006 ◽  
Vol 110 ◽  
pp. 221-230 ◽  
Author(s):  
Ouk Sub Lee ◽  
Dong Hyeok Kim ◽  
Seon Soon Choi

The reliability estimation of buried pipeline with corrosion defects is presented. The reliability of corroded pipeline has been estimated by using a theory of probability of failure. And the reliability has been analyzed in accordance with a target safety level. The probability of failure is calculated using the FORM (first order reliability method). The changes in probability of failure corresponding to three corrosion models and eight failure pressure models are systematically investigated in detail. It is highly suggested that the plant designer should select appropriate operating conditions and design parameters and analyze the reliability of buried pipeline with corrosion defects according to the probability of failure and a required target safety level. The normalized margin is defined and estimated accordingly. Furthermore, the normalized margin is used to predict the failure probability using the fitting lines between failure probability and normalized margin.


Author(s):  
Árpád Rózsás ◽  
Miroslav Sýkora

Abstract Parameter estimation uncertainty is often neglected in reliability studies, i.e. point estimates of distribution parameters are used for representative fractiles, and in probabilistic models. A numerical example examines the effect of this uncertainty on structural reliability using Bayesian statistics. The study reveals that the neglect of parameter estimation uncertainty might lead to an order of magnitude underestimation of failure probability.


Author(s):  
Yoshihito Yamaguchi ◽  
Jinya Katsuyama ◽  
Yinsheng Li

Several nuclear power plants in Japan have been operating for more than 30 years and cracks due to age-related degradations have been detected in some piping systems during in-service inspections. Furthermore, several of them have experienced severe earthquakes in recent years. Therefore, failure probability analysis and fragility evaluation for piping systems, taking both age-related degradations and seismic loads into consideration, has become increasingly important for the structural integrity evaluation and the seismic probabilistic risk assessment. Probabilistic fracture mechanics (PFM) is recognized as a rational methodology for failure probability analysis and fragility evaluation of aged piping, because it can take the scatters and uncertainties of influence parameters into account. In our Japan Atomic Energy Agency (JAEA), a PFM analysis code PASCAL-SP was developed for aged piping considering age-related degradations. In this study, we improved PASCAL-SP for the fragility evaluation taking both age-related degradations and seismic loads into account. The details of the improvement of PASCAL-SP are explained and some example analysis results of failure probabilities, fragility curves and a preliminary investigation on seismic safety margin are presented in this paper.


2021 ◽  
Vol 15 (57) ◽  
pp. 138-159
Author(s):  
Abbasali Sadeghi ◽  
Hamid Kazemi ◽  
Maysam Samadi

The ground external columns of buildings are vulnerable to the extreme actions such as a vehicle collision. This event is a common scenario of buildings' damages. In this study, a nonlinear model of 2-story steel moment-resisting frame (SMRF) is made in OpenSees software. This paper aims investigating the reliability analysis of aforementioned structure under heavy vehicle impact loadings by Monte Carlo Simulation (MCS) in MATLAB software. To reduce computational costs, meta-model techniques such as Kriging, Polynomial Response Surface Methodology (PRSM) and Artificial Neural Network (ANN) are applied and their efficiency is assessed. At first, the random variables are defined. Then, the sensitivity analyses are performed using MCS and Sobol's methods. Finally, the failure probabilities and reliability indices of studied frame are presented under impact loadings with various collision velocities at different performance levels and thus, the behavior of selected SMRF is compared by using fragility curves. The results showed that the random variables such as mass and velocity of vehicle and yield strength of used materials were the most effective parameters in the failure probability computation. Among the meta-models, Kriging can estimate the failure probability with the least error, sample number with minimum computer processing time, in comparison with MCS.


2017 ◽  
Vol 2017 ◽  
pp. 1-20 ◽  
Author(s):  
Iman Mansouri ◽  
Gholamreza Ghodrati Amiri ◽  
Jong Wan Hu ◽  
Mohammadreza Khoshkalam ◽  
Sanaz Soori ◽  
...  

With improving technology, the idea of using energy dissipater equipment has been strengthened in order to control the structures response in dynamic loads such as wind and earthquake. In this research, we dealt with seismic performance of base isolated structures with lead-rubber bearing (LRB) using incremental dynamic analysis (IDA). For this purpose, 3- and 9-story buildings have been utilized in the SAC project undergoing 22 earthquake records which were far-fault. Plotting the fragility curve for various states of design time period and isolator damping of LRB, it is observed that, by increasing damping, the isolator has not been activated in small spectrum acceleration, which shows that the annual exceedance probability is increased in immediate occupancy (IO) performance level and decreased in life safety (LS) performance level. The results show the reduction of determined failure probability in fragility curves for two levels of performance of uninterrupted use and lateral safety. Likewise obtained results show that, with increasing design time period of isolator, the amount of failure probability is decreased rather than the isolator with smaller design time period, for both LS and IO states. And the isolator illustrates better performance.


Author(s):  
S. Maleki ◽  
X. Cui

Using Risk-Based Inspection (RBI) and Fitness for Service (FFS) approaches to manage the integrity of pressure equipment has been the industries best practice for almost a decade. However, there had never been a procedural link between these two approaches in a way that when one performed FFS analysis on a defect, one could update the risk accordingly. This paper proposes a quantitative method to refresh the risk calculated in the RBI process when FFS analysis is completed on a locally thinned area. The proposed approach applies a probabilistic technique by considering the Remaining Strength Factor (RSF) from API 579-1/ASME FFS-1 as the limit state equation and assuming the corrosion rate as a distribution variable to estimate the unconditional probability of failure. This value is then modified using a Bayesian updating method allowing for the conditional probability to represent a new failure likelihood which could be utilized in the RBI planning.


2015 ◽  
Vol 1099 ◽  
pp. 52-60 ◽  
Author(s):  
Abdelkhalak El Hami ◽  
Bouchaib Radi

In this paper, an original method is presented for evaluating the probability of failure in a precise manner in the tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the load paths can lead to failure. Our approach is to determine the space failure probability for each item in the area is critical. It is defined by identifying the critical element, and then a patch is defined on this item that represents the area of the most probable failure. The identification of the critical element for each failure mode is done by reference the state of strain on the forming limit curve (FLC) of the material. Access to the probability of space failure allows to give an idea on the stability of the process and also to predict the most likely area where plastic instability can appear. The failure probability estimation based on a characterization probabilistic principal strains (major and minor) for each failure mode and for each element. Access to this probability of failure in a direct manner is impossible given the complexity of the treated problem and the huge number of calculations by finite elements necessary. To compensate for this problem, approximation techniques have been used to replace the real model by metamodel that enables to evaluate the response quickly and allows us to get an idea on the stability of the process.Keywords: Hydroforming process, metamodels, random, forming limit curve (FLC), failure mode, finite element.


Sign in / Sign up

Export Citation Format

Share Document