Testing of an Ultrahigh-performance Concrete Overlay Developed Using Local Materials

Author(s):  
Mark P. Manning ◽  
Brad D. Weldon ◽  
Craig M. Newtson

<p>The superior mechanical and durability properties of ultrahigh-performance concrete (UHPC) offer significant potential advantages when used as an overlay material—a common method for extending the service life of concrete bridge decks. Providing high compressive strength, improved environmental resistance, and increased service-life expectancy compared to conventional concretes, UHPC mixture proportions can be adapted using local materials. Flexural testing of a high-performance concrete (HPC; 66 MPa) prestressed channel beam bridge girder was conducted to investigate the use of nonproprietary UHPC (120 MPa) developed using materials primarily local to New Mexico, USA, for bridge deck overlays. The girder was first subjected to cyclic loading (minimum 1000 load-unload cycles to deflection-based service load conditions) to establish baseline performance and behavior. The girder surface was then textured, and a 25 mm nonproprietary UHPC overlay was cast. Cyclic loading was repeated for the girder-overlay system before loading the system to failure to investigate post-cracking flexural behavior. The UHPC overlay developed satisfactory bond with the HPC substrate without a bonding agent and exhibited no visible signs of distress or debonding after cyclic loading. Comparative analyses indicated increased stiffness and capacity for the girder- overlay system.</p>

2019 ◽  
Vol 20 (4) ◽  
pp. 1243-1253 ◽  
Author(s):  
Jan‐Paul Lanwer ◽  
Vincent Oettel ◽  
Martin Empelmann ◽  
Svenja Höper ◽  
Ursula Kowalsky ◽  
...  

2012 ◽  
Vol 174-177 ◽  
pp. 1067-1071 ◽  
Author(s):  
Jon Bi ◽  
Binsar Hariandja ◽  
Iswandi Imran ◽  
Ivindra Pane

Keywords: High Performance Concrete, mix proportions, compressive strength , and durability Abstract. The use of concrete materials to date, remain a key ingredient in such construction work on the construction of building, bridges and infrastructure. One indicator is the increased production of readymix concrete which is nearly 16 billion tons in 2010. But the increased used of concrete, apparently bring the impact of environmental damage. This is due to the fact that production of raw materials contributes greatly to CO2 in the air. One effort to reduce such impact is to use of high performance concretes. Mix proportion of High Performance Concrete are strongly determined by the quality and availablity of local materials. The implications of research result from other countries can‘t be directly used. Therefore is need to the research on development of High Performance Concrete mix using locally available materials. In this research the mix proportions for f’c : 60 and 80 MPa are developed using local materials that are commonly used by readymix producers. The high Performance Concrete is developed based on compressive strength and durability. The result is expected to be applied to readymix industry particularly for construction use in Indonesia.


2010 ◽  
Vol 452-453 ◽  
pp. 717-720 ◽  
Author(s):  
Gum Sung Ryu ◽  
Su Tae Kang ◽  
Jung Jun Park ◽  
Kyung Taek Koh ◽  
Sung Wook Kim

This paper intends to examine the effects if the length and shape of steel fibers on the mechanical characteristics of ultra-high performance concrete (UHPC). Accordingly, the length (l) of the steel fibers with diameter (d) of 0.2 mm is varied as 13 mm, 16.3 mm and 19.5 mm and their corresponding aspect ratios (l/d) are 65, 82 and 98. Straight and wave-shaped fibers are adopted to manufacture UHPC. Thereafter, the effects of the aspect ratio and characteristics of the wave-shape of the steel fibers on the strength characteristics of UHPC are examined through compressive and flexural strength tests. The results showed small differences in the workability and compressive behavior but revealed that changing the length of the fibers and increasing the aspect ratio are improving the flexural behavior of UHPC. Specifically, the flexural strength was enhanced by 25% and the flexural toughness by 30%. Compared to rectilinear fibers, the adoption of wave-shaped fibers is seen to degrade the flexural behavior regardless of the aspect ratio. Consequently, using straight steel fibers and adopting larger aspect ratio seems advisable to improve the toughness of UHPC.


2011 ◽  
Vol 243-249 ◽  
pp. 1145-1155
Author(s):  
Jian Yang ◽  
Zhi Fang ◽  
Gong Lian Dai

Ultra High Performance Concrete (UHPC), which has very special properties that are remarkably different to the properties of normal and high performance concrete, is being increasingly used for the construction of structure. In this paper, an experimental program was formulated to investigate the characteristics of complete stress-strain curve of UHPC in uniaxial compression and flexural behaviors of prestressed UHPC beams. The particular focus was the influence of the partial prestress ratio and jacking stress on the flexural response of UHPC beams. The results show that UHPC is of good deformability, and a general form of the serpentine curve is proposed to represent the complete stress-strain relationship of UHPC in compression. The tests of beams demonstrated that the UHPC beams have an excellent behavior in load carrying capacity, crack distribution and deformability, their ultimate deflection can reach 1/34~1/70 of the span. Based on this investigation, theoretical correlations for the prediction structure response of UHPC beam are proposed.


Sign in / Sign up

Export Citation Format

Share Document