scholarly journals Dynamics of the pneumonic plague epidemic in Madagascar, August to October 2017

2017 ◽  
Vol 22 (46) ◽  
Author(s):  
Shinya Tsuzuki ◽  
Hyojung Lee ◽  
Fuminari Miura ◽  
Yat Hin Chan ◽  
Sung-mok Jung ◽  
...  

Transmission potential and severity of pneumonic plague in Madagascar were assessed. Accounting for reporting delay, the reproduction number was estimated at 1.73. The case fatality risk was estimated as 5.5%. Expected numbers of exported cases from Madagascar were estimated across the world and all estimates were below 1 person from August to October, 2017.

Author(s):  
Simona Bignami-Van Assche ◽  
Daniela Ghio ◽  
Ari Van Assche

ABSTRACTWhen calculated from aggregate data on confirmed cases and deaths, the case-fatality risk (CFR) is a simple ratio between the former and the latter, which is prone to numerous biases. With individual-level data, the CFR can be estimated as a true measure of risk as the proportion of incidence for the disease. We present the first estimates of the CFR for COVID-19 by age and sex based on event history modelling of the risk of dying among confirmed positive individuals in the Canadian province of Ontario, which maintains one of the few individual-level datasets on COVID-19 in the world.


BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Han Fu ◽  
Kaja Abbas ◽  
Petra Klepac ◽  
Kevin van Zandvoort ◽  
Hira Tanvir ◽  
...  

Abstract Background Model-based estimates of measles burden and the impact of measles-containing vaccine (MCV) are crucial for global health priority setting. Recently, evidence from systematic reviews and database analyses have improved our understanding of key determinants of MCV impact. We explore how representations of these determinants affect model-based estimation of vaccination impact in ten countries with the highest measles burden. Methods Using Dynamic Measles Immunisation Calculation Engine (DynaMICE), we modelled the effect of evidence updates for five determinants of MCV impact: case-fatality risk, contact patterns, age-dependent vaccine efficacy, the delivery of supplementary immunisation activities (SIAs) to zero-dose children, and the basic reproduction number. We assessed the incremental vaccination impact of the first (MCV1) and second (MCV2) doses of routine immunisation and SIAs, using metrics of total vaccine-averted cases, deaths, and disability-adjusted life years (DALYs) over 2000–2050. We also conducted a scenario capturing the effect of COVID-19 related disruptions on measles burden and vaccination impact. Results Incorporated with the updated data sources, DynaMICE projected 253 million measles cases, 3.8 million deaths and 233 million DALYs incurred over 2000–2050 in the ten high-burden countries when MCV1, MCV2, and SIA doses were implemented. Compared to no vaccination, MCV1 contributed to 66% reduction in cumulative measles cases, while MCV2 and SIAs reduced this further to 90%. Among the updated determinants, shifting from fixed to linearly-varying vaccine efficacy by age and from static to time-varying case-fatality risks had the biggest effect on MCV impact. While varying the basic reproduction number showed a limited effect, updates on the other four determinants together resulted in an overall reduction of vaccination impact by 0.58%, 26.2%, and 26.7% for cases, deaths, and DALYs averted, respectively. COVID-19 related disruptions to measles vaccination are not likely to change the influence of these determinants on MCV impact, but may lead to a 3% increase in cases over 2000–2050. Conclusions Incorporating updated evidence particularly on vaccine efficacy and case-fatality risk reduces estimates of vaccination impact moderately, but its overall impact remains considerable. High MCV coverage through both routine immunisation and SIAs remains essential for achieving and maintaining low incidence in high measles burden settings.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melissa C. MacKinnon ◽  
Scott A. McEwen ◽  
David L. Pearl ◽  
Outi Lyytikäinen ◽  
Gunnar Jacobsson ◽  
...  

Abstract Background Escherichia coli is the most common cause of bloodstream infections (BSIs) and mortality is an important aspect of burden of disease. Using a multinational population-based cohort of E. coli BSIs, our objectives were to evaluate 30-day case fatality risk and mortality rate, and determine factors associated with each. Methods During 2014–2018, we identified 30-day deaths from all incident E. coli BSIs from surveillance nationally in Finland, and regionally in Sweden (Skaraborg) and Canada (Calgary, Sherbrooke, western interior). We used a multivariable logistic regression model to estimate factors associated with 30-day case fatality risk. The explanatory variables considered for inclusion were year (2014–2018), region (five areas), age (< 70-years-old, ≥70-years-old), sex (female, male), third-generation cephalosporin (3GC) resistance (susceptible, resistant), and location of onset (community-onset, hospital-onset). The European Union 28-country 2018 population was used to directly age and sex standardize mortality rates. We used a multivariable Poisson model to estimate factors associated with mortality rate, and year, region, age and sex were considered for inclusion. Results From 38.7 million person-years of surveillance, we identified 2961 30-day deaths in 30,923 incident E. coli BSIs. The overall 30-day case fatality risk was 9.6% (2961/30923). Calgary, Skaraborg, and western interior had significantly increased odds of 30-day mortality compared to Finland. Hospital-onset and 3GC-resistant E. coli BSIs had significantly increased odds of mortality compared to community-onset and 3GC-susceptible. The significant association between age and odds of mortality varied with sex, and contrasts were used to interpret this interaction relationship. The overall standardized 30-day mortality rate was 8.5 deaths/100,000 person-years. Sherbrooke had a significantly lower 30-day mortality rate compared to Finland. Patients that were either ≥70-years-old or male both experienced significantly higher mortality rates than those < 70-years-old or female. Conclusions In our study populations, region, age, and sex were significantly associated with both 30-day case fatality risk and mortality rate. Additionally, 3GC resistance and location of onset were significantly associated with 30-day case fatality risk. Escherichia coli BSIs caused a considerable burden of disease from 30-day mortality. When analyzing population-based mortality data, it is important to explore mortality through two lenses, mortality rate and case fatality risk.


Author(s):  
Nick Wilson ◽  
Amanda Kvalsvig ◽  
Lucy Telfar Barnard ◽  
Michael G Baker

AbstractThere is large uncertainty around the case fatality risk (CFR) for COVID-19 in China. Therefore, we considered symptomatic cases outside of China (countries/settings with 20+ cases) and the proportion who are in intensive care units (4.0%, 14/349 on 13 February 2020). Given what is known about CFRs for ICU patients with severe respiratory conditions from a meta-analysis, we estimated a CFR of 1.37% (95%CI: 0.57% to 3.22%) for COVID- 19 cases outside of China.


Author(s):  
Kenji Mizumoto ◽  
Katsushi Kagaya ◽  
Gerardo Chowell

AbstractBackgroundSince the first cluster of cases was identified in Wuhan City, China, in December, 2019, coronavirus disease 2019 (COVID-19) rapidly spread around the world. Despite the scarcity of publicly available data, scientists around the world have made strides in estimating the magnitude of the epidemic, the basic reproduction number, and transmission patterns. Accumulating evidence suggests that a substantial fraction of the infected individuals with the novel coronavirus show little if any symptoms, which highlights the need to reassess the transmission potential of this emerging disease. In this study, we derive estimates of the transmissibility and virulence of COVID-19 in Wuhan City, China, by reconstructing the underlying transmission dynamics using multiple data sources.MethodsWe employ statistical methods and publicly available epidemiological datasets to jointly derive estimates of transmissibility and severity associated with the novel coronavirus. For this purpose, the daily series of laboratory–confirmed COVID-19 cases and deaths in Wuhan City together with epidemiological data of Japanese repatriated from Wuhan City on board government–chartered flights were integrated into our analysis.ResultsOur posterior estimates of basic reproduction number (R) in Wuhan City, China in 2019–2020 reached values at 3.49 (95%CrI: 3.39–3.62) with a mean serial interval of 6.0 days, and the enhanced public health intervention after January 23rd in 2020 was associated with a significantly reduced R at 0.84 (95%CrI: 0.81–0.88), with the total number of infections (i.e. cumulative infections) estimated at 1906634 (95%CrI: 1373500–2651124) in Wuhan City, elevating the overall proportion of infected individuals to 19.1% (95%CrI: 13.5–26.6%). We also estimated the most recent crude infection fatality ratio (IFR) and time–delay adjusted IFR at 0.04% (95% CrI: 0.03%–0.06%) and 0.12% (95%CrI: 0.08–0.17%), respectively, estimates that are several orders of magnitude smaller than the crude CFR estimated at 4.06%ConclusionsWe have estimated key epidemiological parameters of the transmissibility and virulence of COVID-19 in Wuhan, China during January-February, 2020 using an ecological modelling approach. The power of this approach lies in the ability to infer epidemiological parameters with quantified uncertainty from partial observations collected by surveillance systems.


2020 ◽  
Vol 9 (10) ◽  
pp. 3326
Author(s):  
Taishi Kayano ◽  
Hiroshi Nishiura

The crude case fatality risk (CFR) for coronavirus disease (COVID-19) in Singapore is remarkably small. We aimed to estimate the unbiased CFR by age for Singapore and Japan and compare these estimates by calculating the standardized mortality ratio (SMR). Age-specific CFRs for COVID-19 were estimated in real time, adjusting for the delay from illness onset to death. The SMR in Japan was estimated by using the age distribution of the Singapore population. Among cases aged 60–69 years and 70–79 years, the age-specific CFRs in Singapore were estimated as 1.84% (95% confidence interval: 0.46–4.72%) and 5.57% (1.41–13.97%), respectively, and those in Japan as 5.52% (4.55–6.62%) and 15.49% (13.81–17.27%), respectively. The SMR of COVID-19 in Japan, when compared with Singapore as the baseline, was estimated to be 1.46 (1.09–2.96). The overall CFR for Singapore is lower than that for Japan. It is possible that the circulating variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Singapore causes a milder clinical course of COVID-19 infection compared with other strains. If infection with a low-virulence SARS-CoV-2 variant provides protection against infection by high-virulence strains, the existence of such a strain is encouraging news for the many countries struggling to suppress this virus.


Author(s):  
Xiaowei Deng ◽  
Juan Yang ◽  
Wei Wang ◽  
Xiling Wang ◽  
Jiaxin Zhou ◽  
...  

Abstract Background To assess the case fatality risk (CFR) of COVID-19 in mainland China, stratified by region and clinical category, and estimate key time-to-event intervals. Methods We collected individual information and aggregated data on COVID-19 cases from publicly available official sources from 29 December 2019 to 17 April 2020. We accounted for right-censoring to estimate the CFR and explored the risk factors for mortality. We fitted Weibull, gamma, and log-normal distributions to time-to-event data using maximum-likelihood estimation. Results We analyzed 82 719 laboratory-confirmed cases reported in mainland China, including 4632 deaths and 77 029 discharges. The estimated CFR was 5.65% (95% confidence interval [CI], 5.50–5.81%) nationally, with the highest estimate in Wuhan (7.71%) and lowest in provinces outside Hubei (0.86%). The fatality risk among critical patients was 3.6 times that of all patients and 0.8–10.3-fold higher than that of mild-to-severe patients. Older age (odds ratio [OR], 1.14 per year; 95% CI, 1.11–1.16) and being male (OR, 1.83; 95% CI, 1.10–3.04) were risk factors for mortality. The times from symptom onset to first healthcare consultation, to laboratory confirmation, and to hospitalization were consistently longer for deceased patients than for those who recovered. Conclusions Our CFR estimates based on laboratory-confirmed cases ascertained in mainland China suggest that COVID-19 is more severe than the 2009 H1N1 influenza pandemic in hospitalized patients, particularly in Wuhan. Our study provides a comprehensive picture of the severity of the first wave of the pandemic in China. Our estimates can help inform models and the global response to COVID-19.


Sign in / Sign up

Export Citation Format

Share Document