fatality risk
Recently Published Documents


TOTAL DOCUMENTS

193
(FIVE YEARS 69)

H-INDEX

27
(FIVE YEARS 8)

Author(s):  
Ashish Verma ◽  
Sajitha Sasidharan ◽  
Kavi Bhalla ◽  
Hemanthini Allirani

BMC Medicine ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Han Fu ◽  
Kaja Abbas ◽  
Petra Klepac ◽  
Kevin van Zandvoort ◽  
Hira Tanvir ◽  
...  

Abstract Background Model-based estimates of measles burden and the impact of measles-containing vaccine (MCV) are crucial for global health priority setting. Recently, evidence from systematic reviews and database analyses have improved our understanding of key determinants of MCV impact. We explore how representations of these determinants affect model-based estimation of vaccination impact in ten countries with the highest measles burden. Methods Using Dynamic Measles Immunisation Calculation Engine (DynaMICE), we modelled the effect of evidence updates for five determinants of MCV impact: case-fatality risk, contact patterns, age-dependent vaccine efficacy, the delivery of supplementary immunisation activities (SIAs) to zero-dose children, and the basic reproduction number. We assessed the incremental vaccination impact of the first (MCV1) and second (MCV2) doses of routine immunisation and SIAs, using metrics of total vaccine-averted cases, deaths, and disability-adjusted life years (DALYs) over 2000–2050. We also conducted a scenario capturing the effect of COVID-19 related disruptions on measles burden and vaccination impact. Results Incorporated with the updated data sources, DynaMICE projected 253 million measles cases, 3.8 million deaths and 233 million DALYs incurred over 2000–2050 in the ten high-burden countries when MCV1, MCV2, and SIA doses were implemented. Compared to no vaccination, MCV1 contributed to 66% reduction in cumulative measles cases, while MCV2 and SIAs reduced this further to 90%. Among the updated determinants, shifting from fixed to linearly-varying vaccine efficacy by age and from static to time-varying case-fatality risks had the biggest effect on MCV impact. While varying the basic reproduction number showed a limited effect, updates on the other four determinants together resulted in an overall reduction of vaccination impact by 0.58%, 26.2%, and 26.7% for cases, deaths, and DALYs averted, respectively. COVID-19 related disruptions to measles vaccination are not likely to change the influence of these determinants on MCV impact, but may lead to a 3% increase in cases over 2000–2050. Conclusions Incorporating updated evidence particularly on vaccine efficacy and case-fatality risk reduces estimates of vaccination impact moderately, but its overall impact remains considerable. High MCV coverage through both routine immunisation and SIAs remains essential for achieving and maintaining low incidence in high measles burden settings.


Author(s):  
Abnish Kumar Bharti ◽  
Jay Kishore ◽  
Aditya Dixit

Myiasis is infestation by fly larvae (diptera) in live vertebrates, including humans. Newborn period is very unusual for any infestation. In literature there are only a few cases reported of neonatal aural myiasis from India. We described a case of aural myiasis caused by the Sarcophagidae family in a 13 hours old newborn in this paper. Aural myiasis in a newborn can be dangerous because of the fatality risk due to penetration to the brain.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Grosso Francesca Maria ◽  
Presanis Anne Margaret ◽  
Kunzmann Kevin ◽  
Jackson Chris ◽  
Corbella Alice ◽  
...  

Abstract Background The aim of this study is to quantify the hospital burden of COVID-19 during the first wave and how it changed over calendar time; to interpret the results in light of the emergency measures introduced to manage the strain on secondary healthcare. Methods This is a cohort study of hospitalised confirmed cases of COVID-19 admitted from February–June 2020 and followed up till 17th July 2020, analysed using a mixture multi-state model. All hospital patients with confirmed COVID-19 disease in Regione Lombardia were involved, admitted from February–June 2020, with non-missing hospital of admission and non-missing admission date. Results The cohort consists of 40,550 patients hospitalised during the first wave. These patients had a median age of 69 (interquartile range 56–80) and were more likely to be men (60%) than women (40%). The hospital-fatality risk, averaged over all pathways through hospital, was 27.5% (95% CI 27.1–28.0%); and steadily decreased from 34.6% (32.5–36.6%) in February to 7.6% (6.3–10.6%) in June. Among surviving patients, median length of stay in hospital was 11.8 (11.6–12.3) days, compared to 8.1 (7.8–8.5) days in non-survivors. Averaged over final outcomes, median length of stay in hospital decreased from 21.4 (20.5–22.8) days in February to 5.2 (4.7–5.8) days in June. Conclusions The hospital burden, in terms of both risks of poor outcomes and lengths of stay in hospital, has been demonstrated to have decreased over the months of the first wave, perhaps reflecting improved treatment and management of COVID-19 cases, as well as reduced burden as the first wave waned. The quantified burden allows for planning of hospital beds needed for current and future waves of SARS-CoV-2 i.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Joseph L. Servadio ◽  
Claudia Muñoz-Zanzi ◽  
Matteo Convertino

Abstract Background Case fatality risk (CFR), commonly referred to as a case fatality ratio or rate, represents the probability of a disease case being fatal. It is often estimated for various diseases through analysis of surveillance data, case reports, or record examinations. Reported CFR values for Yellow Fever vary, offering wide ranges. Estimates have not been found through systematic literature review, which has been used to estimate CFR of other diseases. This study aims to estimate the case fatality risk of severe Yellow Fever cases through a systematic literature review and meta-analysis. Methods A search strategy was implemented in PubMed and Ovid Medline in June 2019 and updated in March 2021, seeking reported severe case counts, defined by fever and either jaundice or hemorrhaging, and the number of those that were fatal. The searches yielded 1,133 studies, and title/abstract review followed by full text review produced 14 articles reporting 32 proportions of fatal cases, 26 of which were suitable for meta-analysis. Four studies with one proportion each were added to include clinical case data from the recent outbreak in Brazil. Data were analyzed through an intercept-only logistic meta-regression with random effects for study. Values of the I2 statistic measured heterogeneity across studies. Results The estimated CFR was 39 % (95 % CI: 31 %, 47 %). Stratifying by continent showed that South America observed a higher CFR than Africa, though fewer studies reported estimates for South America. No difference was seen between studies reporting surveillance data and studies investigating outbreaks, and no difference was seen among different symptom definitions. High heterogeneity was observed across studies. Conclusions Approximately 39 % of severe Yellow Fever cases are estimated to be fatal. This study provides the first systematic literature review to estimate the CFR of Yellow Fever, which can provide insight into outbreak preparedness and estimating underreporting.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Melissa C. MacKinnon ◽  
Scott A. McEwen ◽  
David L. Pearl ◽  
Outi Lyytikäinen ◽  
Gunnar Jacobsson ◽  
...  

Abstract Background Escherichia coli is the most common cause of bloodstream infections (BSIs) and mortality is an important aspect of burden of disease. Using a multinational population-based cohort of E. coli BSIs, our objectives were to evaluate 30-day case fatality risk and mortality rate, and determine factors associated with each. Methods During 2014–2018, we identified 30-day deaths from all incident E. coli BSIs from surveillance nationally in Finland, and regionally in Sweden (Skaraborg) and Canada (Calgary, Sherbrooke, western interior). We used a multivariable logistic regression model to estimate factors associated with 30-day case fatality risk. The explanatory variables considered for inclusion were year (2014–2018), region (five areas), age (< 70-years-old, ≥70-years-old), sex (female, male), third-generation cephalosporin (3GC) resistance (susceptible, resistant), and location of onset (community-onset, hospital-onset). The European Union 28-country 2018 population was used to directly age and sex standardize mortality rates. We used a multivariable Poisson model to estimate factors associated with mortality rate, and year, region, age and sex were considered for inclusion. Results From 38.7 million person-years of surveillance, we identified 2961 30-day deaths in 30,923 incident E. coli BSIs. The overall 30-day case fatality risk was 9.6% (2961/30923). Calgary, Skaraborg, and western interior had significantly increased odds of 30-day mortality compared to Finland. Hospital-onset and 3GC-resistant E. coli BSIs had significantly increased odds of mortality compared to community-onset and 3GC-susceptible. The significant association between age and odds of mortality varied with sex, and contrasts were used to interpret this interaction relationship. The overall standardized 30-day mortality rate was 8.5 deaths/100,000 person-years. Sherbrooke had a significantly lower 30-day mortality rate compared to Finland. Patients that were either ≥70-years-old or male both experienced significantly higher mortality rates than those < 70-years-old or female. Conclusions In our study populations, region, age, and sex were significantly associated with both 30-day case fatality risk and mortality rate. Additionally, 3GC resistance and location of onset were significantly associated with 30-day case fatality risk. Escherichia coli BSIs caused a considerable burden of disease from 30-day mortality. When analyzing population-based mortality data, it is important to explore mortality through two lenses, mortality rate and case fatality risk.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ian C. Marschner

Abstract Background Mortality is a key component of the natural history of COVID-19 infection. Surveillance data on COVID-19 deaths and case diagnoses are widely available in the public domain, but they are not used to model time to death because they typically do not link diagnosis and death at an individual level. This paper demonstrates that by comparing the unlinked patterns of new diagnoses and deaths over age and time, age-specific mortality and time to death may be estimated using a statistical method called deconvolution. Methods Age-specific data were analysed on 816 deaths among 6235 cases over age 50 years in Victoria, Australia, from the period January through December 2020. Deconvolution was applied assuming logistic dependence of case fatality risk (CFR) on age and a gamma time to death distribution. Non-parametric deconvolution analyses stratified into separate age groups were used to assess the model assumptions. Results It was found that age-specific CFR rose from 2.9% at age 65 years (95% CI:2.2 – 3.5) to 40.0% at age 95 years (CI: 36.6 – 43.6). The estimated mean time between diagnosis and death was 18.1 days (CI: 16.9 – 19.3) and showed no evidence of varying by age (heterogeneity P = 0.97). The estimated 90% percentile of time to death was 33.3 days (CI: 30.4 – 36.3; heterogeneity P = 0.85). The final age-specific model provided a good fit to the observed age-stratified mortality patterns. Conclusions Deconvolution was demonstrated to be a powerful analysis method that could be applied to extensive data sources worldwide. Such analyses can inform transmission dynamics models and CFR assessment in emerging outbreaks. Based on these Australian data it is concluded that death from COVID-19 occurs within three weeks of diagnosis on average but takes five weeks in 10% of fatal cases. Fatality risk is negligible in the young but rises above 40% in the elderly, while time to death does not seem to vary by age.


One Health ◽  
2021 ◽  
pp. 100283
Author(s):  
Balbir B. Singh ◽  
Michael P. Ward ◽  
Mark Lowerison ◽  
Ryan T. Lewinson ◽  
Isabelle A. Vallerand ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document