scholarly journals Exchange (uptake and synthesis) of amino acids in the digestive tract of cattle when used in diet different ingredient composition of the feed

2019 ◽  
pp. 54-57
Author(s):  
Sviatoslav Valerievich Lebedev ◽  
Elmira Zakievna Gubaidulina ◽  
Elena Vladimirovna Sheida ◽  
Victoria Vladimirovna Grechkina

Materials characterizing the role of digestive tract in amino acid metabolism are obtained based on studies assessing the effect of diets with various sources of protein (fish meal, sunflower meal). A number of metabolic regularities (synthesis and assimilation) of amino acids in the digestive tract of an animal follow from the data obtained by us. Сhyme inflowing from the stomach into intestine, contains 1.5-2 times more amino acids, compared with the number of them in the diet. Consequently, the same amount of basic amino acids can be synthesized in the process of digestion of ruminants. Most of amino acids from chyme is digested in the intestine. The actual amount of amino acids digested and included in the metabolism of animal was significantly higher than their content in the eaten dietand reached 108.1 - 148.9% of that received with the diet.

2002 ◽  
Vol 27 (6) ◽  
pp. 646-662 ◽  
Author(s):  
Donald K. Layman

Exercise produces changes in protein and amino acid metabolism. These changes include degradation of the branched-chain amino acids, production of alanine and glutamine, and changes in protein turnover. One of the amino acid most affected by exercise is the branched-chain amino acid leucine. Recently, there has been an increased understanding of the role of leucine in metabolic regulations and remarkable new findings about the role of leucine in intracellular signaling. Leucine appears to exert a synergistic role with insulin as a regulatory factor in the insulin/phosphatidylinositol-3 kinase (PI3-K) signal cascade. Insulin serves to activate the signal pathway, while leucine is essential to enhance or amplify the signal for protein synthesis at the level of peptide initiation. Studies feeding amino acids or leucine soon after exercise suggest that post-exercise consumption of amino acids stimulates recovery of muscle protein synthesis via translation regulations. This review focuses on the unique roles of leucine in amino acid metabolism in skeletal muscle during and after exercise. Key words: branched-chain amino acids, insulin, protein synthesis, skeletal muscle


2003 ◽  
Vol 15 (1) ◽  
pp. 38-43 ◽  
Author(s):  
L Pepplinkhuizen ◽  
F M M A van der Heijden ◽  
S Tuinier ◽  
W M A Verhoeven ◽  
D Fekkes

Background:The pathogenesis of atypical psychoses, in particularly those characterized by polymorphic psychopathology, is hypothesized to be related to disturbances in amino acid metabolism.Objective:In the present study, the role of the amino acid serine was investigated in patients with acute transient polymorphic psychosis.Methods:Patients were loaded with serine and with the amino acids glycine and alanine as controls and subsequently evaluated for the development of psychopathological symptoms. In addition, plasma levels of amino acids were measured.Results:In a subgroup of patients suffering from atypical psychoses, this biochemical challenge resulted in the reappearance of psychedelic symptoms in particular. Furthermore, significantly lower plasma concentrations of serine were found. In vitro experiments revealed a disturbance in the one-carbon metabolism. In another group of patients the loading provoked vegetative symptoms and fatigue.Conclusions:Disturbances in amino acid metabolism may be involved in the emergence of certain psychotic disorders.


1978 ◽  
Vol 176 (2) ◽  
pp. 623-626 ◽  
Author(s):  
E A Newsholme ◽  
T Williams

Starvation or feeding rats on a high-protein diet, valine or isoleucine, but not leucine, increases the activity of muscle phosphoenolpyruvate carboxykinase, but has no effect on NADP+-linked malate dehydrogenase. This suggests that muscle phosphoenolpyruvate carboxykinase is involved in oxidation or conversion of some amino acids to alanine.


GeroScience ◽  
2021 ◽  
Author(s):  
Haihui Zhuang ◽  
Sira Karvinen ◽  
Timo Törmäkangas ◽  
Xiaobo Zhang ◽  
Xiaowei Ojanen ◽  
...  

AbstractAerobic capacity is a strong predictor of longevity. With aging, aerobic capacity decreases concomitantly with changes in whole body metabolism leading to increased disease risk. To address the role of aerobic capacity, aging, and their interaction on metabolism, we utilized rat models selectively bred for low and high intrinsic aerobic capacity (LCRs/HCRs) and compared the metabolomics of serum, muscle, and white adipose tissue (WAT) at two time points: Young rats were sacrificed at 9 months of age, and old rats were sacrificed at 21 months of age. Targeted and semi-quantitative metabolomics analysis was performed on the ultra-pressure liquid chromatography tandem mass spectrometry (UPLC-MS) platform. The effects of aerobic capacity, aging, and their interaction were studied via regression analysis. Our results showed that high aerobic capacity is associated with an accumulation of isovalerylcarnitine in muscle and serum at rest, which is likely due to more efficient leucine catabolism in muscle. With aging, several amino acids were downregulated in muscle, indicating more efficient amino acid metabolism, whereas in WAT less efficient amino acid metabolism and decreased mitochondrial β-oxidation were observed. Our results further revealed that high aerobic capacity and aging interactively affect lipid metabolism in muscle and WAT, possibly combating unfavorable aging-related changes in whole body metabolism. Our results highlight the significant role of WAT metabolism for healthy aging.


1973 ◽  
Vol 28 (7-8) ◽  
pp. 449-451 ◽  
Author(s):  
G. Peter ◽  
H. Angst ◽  
U. Koch

Free and protein-bound amino acids in serum and scales were investigated. In serum the bound amino acids of psoriatics are significantly higher with exception of Pro, Met, Tyr and Phe in contrast to normal subjects. For free amino acids the differences between normal subjects and psoriatics found in serum and scales are not significant. Results are discussed in relation to the single amino acids and the biochemical correlations are outlined which takes the pathological process as a basis.


Cancers ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 675 ◽  
Author(s):  
Bo-Hyun Choi ◽  
Jonathan L. Coloff

Far beyond simply being 11 of the 20 amino acids needed for protein synthesis, non-essential amino acids play numerous important roles in tumor metabolism. These diverse functions include providing precursors for the biosynthesis of macromolecules, controlling redox status and antioxidant systems, and serving as substrates for post-translational and epigenetic modifications. This functional diversity has sparked great interest in targeting non-essential amino acid metabolism for cancer therapy and has motivated the development of several therapies that are either already used in the clinic or are currently in clinical trials. In this review, we will discuss the important roles that each of the 11 non-essential amino acids play in cancer, how their metabolic pathways are linked, and how researchers are working to overcome the unique challenges of targeting non-essential amino acid metabolism for cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document