The Role of Blood-Brain Barrier Transport of Tryptophan and Other Neutral Amino Acids in the Regulation of Substrate-Limited Pathways of Brain Amino Acid Metabolism

Author(s):  
W. M. Pardridge
2020 ◽  
Vol 16 (S2) ◽  
Author(s):  
Christian Limberger ◽  
Pamela C.L. Ferreira ◽  
Fernanda U. Fontella ◽  
Ana Cristina Laydner Joly Oliveira ◽  
Giovanna Bortoluzzi Salles ◽  
...  

2003 ◽  
Vol 285 (6) ◽  
pp. E1167-E1173 ◽  
Author(s):  
Robyn L. O'Kane ◽  
Richard A. Hawkins

Several Na+-dependent carriers of amino acids exist on the abluminal membrane of the blood-brain barrier (BBB). These Na+-dependent carriers are in a position to transfer amino acids from the extracellular fluid of brain to the endothelial cells and thence to the circulation. To date, carriers have been found that may remove nonessential, nitrogen-rich, or acidic (excitatory) amino acids, all of which may be detrimental to brain function. We describe here Na+-dependent transport of large neutral amino acids across the abluminal membrane of the BBB that cannot be ascribed to currently known systems. Fresh brains, from cows killed for food, were used. Microvessels were isolated, and contaminating fragments of basement membranes, astrocyte fragments, and pericytes were removed. Abluminal-enriched membrane fractions from these microvessels were prepared. Transport was Na+dependent, voltage sensitive, and inhibited by 2-aminobicyclo-(2,2,1)-heptane-2-carboxylic acid, a particular inhibitor of the facilitative large neutral amino acid transporter 1 (LAT1) system. The carrier has a high affinity for leucine ( Km21 ± 7 μM) and is inhibited by other neutral amino acids, including glutamine, histidine, methionine, phenylalanine, serine, threonine, tryptophan, and tyrosine. Other established neutral amino acids may enter the brain by way of LAT1-type facilitative transport. The presence of a Na+-dependent carrier on the abluminal membrane capable of removing large neutral amino acids, most of which are essential, from brain indicates a more complex situation that has implications for the control of essential amino acid content of brain.


1996 ◽  
Vol 271 (32) ◽  
pp. 19129-19133 ◽  
Author(s):  
Wha-Joon Lee ◽  
Richard A. Hawkins ◽  
Darryl R. Peterson ◽  
Juan R. Viña

Pharmacology ◽  
1981 ◽  
Vol 22 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Howard James ◽  
Josef E. Fischer

2017 ◽  
Vol 38 (4) ◽  
pp. 656-662 ◽  
Author(s):  
Rasmus H. Dahl ◽  
Ronan M. G. Berg ◽  
Sarah Taudorf ◽  
Damian M. Bailey ◽  
Carsten Lundby ◽  
...  

2002 ◽  
Vol 27 (6) ◽  
pp. 646-662 ◽  
Author(s):  
Donald K. Layman

Exercise produces changes in protein and amino acid metabolism. These changes include degradation of the branched-chain amino acids, production of alanine and glutamine, and changes in protein turnover. One of the amino acid most affected by exercise is the branched-chain amino acid leucine. Recently, there has been an increased understanding of the role of leucine in metabolic regulations and remarkable new findings about the role of leucine in intracellular signaling. Leucine appears to exert a synergistic role with insulin as a regulatory factor in the insulin/phosphatidylinositol-3 kinase (PI3-K) signal cascade. Insulin serves to activate the signal pathway, while leucine is essential to enhance or amplify the signal for protein synthesis at the level of peptide initiation. Studies feeding amino acids or leucine soon after exercise suggest that post-exercise consumption of amino acids stimulates recovery of muscle protein synthesis via translation regulations. This review focuses on the unique roles of leucine in amino acid metabolism in skeletal muscle during and after exercise. Key words: branched-chain amino acids, insulin, protein synthesis, skeletal muscle


1990 ◽  
Vol 10 (5) ◽  
pp. 698-706 ◽  
Author(s):  
G. Moos Knudsen ◽  
K. D. Pettigrew ◽  
C. S. Patlak ◽  
M. M. Hertz ◽  
O. B. Paulson

Blood–brain barrier permeability to four large neutral and one basic amino acid was studied in 30 patients with the double indicator technique. The resultant 64 venous outflow curves were analyzed by means of two models that take tracer backflux and capillary heterogeneity into account. The first model considers the blood–brain barrier as a double membrane where amino acids from plasma enter the endothelial cell. When an endothelial cell volume of 0.001 ml/g was assumed, permeability from the blood into the endothelial cell was, for most amino acids, about 10–20 times larger than the permeability for the reverse direction. The second model assumes that the amino acids, after intracarotid injection, cross a single membrane barrier and enter a well-mixed compartment, the brain extracellular fluid, i.e., the endothelial cell is assumed to behave as a single membrane. With this model, for large neutral amino acids, the permeability out of the extracellular fluid space back to the blood was between 8 to 12 times higher than the permeability from the blood into the brain. Such a difference in permeabilities across the blood–brain barrier can almost entirely be ascribed to the effect of a nonlinear transport system combined with a relatively small brain amino acid metabolism. The significance of the possible presence of an energy-dependent A system at the abluminal side of the blood–brain barrier is discussed and related to the present findings. For both models, calculation of brain extraction by simple peak extraction values underestimates true unidirectional brain uptake by 17–40%. This raises methodological problems when estimating blood to brain transfer of amino acids with this traditional in vivo method.


Sign in / Sign up

Export Citation Format

Share Document