scholarly journals Exopolysaccharides of lactic acid bacteria: applied aspects

Author(s):  
N. A. Fokina ◽  
G. T. Uryadova ◽  
L. V. Karpunina

Exopolysaccharides Lactococcus lactis B-1662 and, to a greater extent, Streptococcus thermophilus have a healing effect on burns in rats. The exopolysaccharide Streptococcus thermophilus also has a prebiotic effect in the poultry body.

Author(s):  
G. T. Uryadova ◽  
E. A. Gorelnikova ◽  
N. A. Fokina ◽  
A. S. Dolmashkina ◽  
L. V. Karpunina

Aim. Study of the effect of exopolysaccharides (EPS) of lactic acid cocci on cytokine activity of macrophages of mice with phagocytosis in vitro Staphylococcus aureus 209-P. Materials and methods. The EPS of Streptococcus thermophilus and Lactococcus lactis B-1662 was used in the work. At 13, 5 and 7, AMP and PMP were isolated and the phagocytosis process was modeled in vitro. After 30 minutes, 1, 6 and 24 hours, the content of pro-inflammatory cytokines IL-1a and TNF-a was determined. Results. EPSs had an ambiguous effect on the production of cytokines. The greatest effect on the synthesis was provided by EPS of S. thermophilus. Conclusion. The results of the study allow us to talk about the possibility of using EPS of S. thermophilus as a preventive immunomodulator for correction of the cytokine status of animals.


Author(s):  
Maria Tereza Pereira ◽  
Elsa Helena Walter de Santana ◽  
Joice Sifuentes dos Santos

Produtos lácteos fermentados contêm bactérias ácido lácticas (BAL), naturalmente presentes ou adicionadas na matriz láctea como culturas iniciadoras (starters), contribuindo com aroma, textura, valor nutricional e segurança microbiológica. Lactobacillus spp., Streptococcus spp., Lactococcus spp. e Leuconostoc spp. são utilizados como culturas starters em laticínios. As BAL podem ser classificadas em mesofílicas (ex Lactococcus lactis) e termofílicas (ex Streptococcus thermophilus), e de acordo com seus metabólitos de fermentação em homofermentativas (ácido lático) e heterofermentativas (ácido lático, dióxido de carbono, diacetil e outros compostos flavorizantes). Entre as BAL há um grupo de bactérias lácticas que não fazem parte da cultura láctica (non starter lactic acid bacteria - NSLAB), que são oriundas do leite cru, do ambiente de ordenha ou da indústria formando biofilmes. As NSLAB são representadas por espécies heterofermentativas de lactobacilos mesofílicos como Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. e L. plantarum spp., e ainda por Pediococcus spp., Leuconostoc spp. e Micrococcus spp. NSLAB termoduricas como Bacillus spp. também são relatadas. As NSLAB em queijos podem ajudar a desenvolver sabor e aroma, porém também são associadas aos defeitos em queijos e leites fermentados. Problemas como odores estranhos, sabor amargo ou muito ácido, perda de viscosidade, perda de coloração, estufamento e formação de gás são associados com a presença e contaminação por NSLAB. Assim, as BAL são importantes micro-organismos na indústria láctea, garantindo sabores e aromas aos derivados. Já a presença de NSLAB podem ser associados com defeitos em queijos e leites fermentados, sendo um problema na indústria beneficiadora.   Palavras-chave: Característica Sensorial. Leites Fermentados. Queijo. Textura.                       Abstract Fermented dairy products contain acid bacteria (BAL) naturally present or added to the dairy matrix as starter cultures (starters), contributing to aroma, texture, nutritional value and microbiological safety. Lactobacillus spp., Streptococcus spp., Lactococcus spp. and Leuconostoc spp. are used as starter dairy crops. As BAL it can be classified as mesophilic (ex: Lactococcus lactis) and thermophilic (ex: Streptococcus thermophilus), and agree with its fermentation metabolites in homofermentative (lactic acid) and heterofermentative (lactic acid, carbon dioxide, diacetyl and other flavorings). Among the BAL, there is a group of lactic bacteria that are not part of the dairy culture (non-initiating lactic acid bacteria - NSLAB) that originate from raw milk, the milking environment or the biofilm-forming industry. NSLAB is represented by heterofermentative species of mesophilic lactobacilli such as Lactobacillus casei spp., L. paracasei spp., L. rhamnosus spp. and L. plantarum spp., and also by Pediococcus spp., Leuconostoc spp. and Micrococcus spp. Termoduric NSLAB such as Bacillus spp. are also related. NSLAB in cheeses may help develop flavor and aroma, and they are also associated with defects in fermented cheeses and milks. Problems such as strange odors, bitter or very acidic taste, loss of viscosity, loss of color, establishment and gas training are associated with the presence and contamination by NSLAB. Thus,  BALs are important microorganisms in the dairy industry, contributing to the dairy flavors and aromas. The presence of NSLAB, on the other hand, can be associated with defects in fermented milk and cheese, being a problem in the processing industry.   Keywords: Cheese. Fermented Milk. Sensory Characteristic. Texture.


Author(s):  
G. T. Uryadova ◽  
N. A. Fokina ◽  
L. V. Karpunina

It is shown that film coatings based on the exopolysaccharides of lactic acid bacteria Lactococcus lactis B-1662 and Streptococcus thermophilus contribute to the healing of burns in rats.


1995 ◽  
Vol 58 (3) ◽  
pp. 316-318 ◽  
Author(s):  
JOHN U. McGREGOR ◽  
SANDRA M. TRAYLOR ◽  
RONALD H. GOUGH ◽  
STEPHANIE HAZLETT ◽  
KENNY BIRD

The ability of lactic cultures to grow on Petrifilm™ SM plates was studied. Frozen yogurt mix was analyzed microbiologically by plating on TOE, LBS, M17 and Petrifilm™ SM. Plates were incubated aerobically in a Gas-Pak System and under a CO2 environment. Also, Lactobacillus bulgaricus, Streptococcus thermophilus, Lactococcus lactis subsp. diacetylactis, and Leuconostoc cremoris were isolated from yogurt and buttermilk samples for study. Isolated cultures were grown in nutrient broth and plated on Petrifilm™ SM and M17 agar. Plates were incubated aerobically and in a Gas-Pak system. Petrifilm™ SM plates performed as well or better than the M17 agar in assaying lactic growth with the exception of Streptococcus thermophilus culture in an aerobic environment. Petrifilm™ SM plates show promise as a method for enumerating viable lactic cultures if incubated in a reduced oxygen environment.


mSystems ◽  
2021 ◽  
Vol 6 (4) ◽  
Author(s):  
Jennifer Mahony

Food fermentations rely on the application of robust bacterial starter cultures, the majority of which are represented by members of the lactic acid bacteria including Lactococcus lactis and Streptococcus thermophilus . Bacteriophage (or phage) proliferation remains one of the most significant threats to the fermentation industry.


2020 ◽  
Vol 8 (10) ◽  
pp. 1528
Author(s):  
Mathilde Lebas ◽  
Peggy Garault ◽  
Daniel Carrillo ◽  
Francisco M. Codoñer ◽  
Muriel Derrien

Interest in preventive or therapeutic strategies targeting gut microbiota is increasing. Such strategies may involve the direct replenishment of the gut microbiota with single strains or strain mixtures, or the manipulation of strain abundance through dietary intervention, including lactic acid bacteria. A few candidate species associated with health benefits have been identified, including Faecalibacterium prausnitzii. Given its growth requirements, modulation of this bacterium has not been extensively studied. In this investigation, we explored the capacity of cell-free supernatants of different Lactobacillus, Streptococcus, Lactococcus, and Bifidobacterium strains to stimulate the growth of F. prausnitzii A2-165. Modulation by four strains with the greatest capacity to stimulate growth or delay lysis, Lactococcus lactis subsp. lactis CNCM I-1631, Lactococcus lactis subsp. cremoris CNCM I-3558, Lactobacillus paracasei CNCM I-3689, and Streptococcus thermophilus CNCM I-3862, was further characterized by transcriptomics. The response of F. prausnitzii to cell-free supernatants from these four strains revealed several shared characteristics, in particular, upregulation of carbohydrate metabolism and cell wall-related genes and downregulation of replication and mobilome genes. Overall, this study suggests differential responses of F. prausnitzii to metabolites produced by different strains, providing protection against cell death, with an increase in peptidoglycan levels for cell wall formation, and reduced cell mobilome activity.


1999 ◽  
Vol 62 (12) ◽  
pp. 1416-1429 ◽  
Author(s):  
J. MIGUEL ROCHA ◽  
F. XAVIER MALCATA

Traditional manufacture of bread from maize has been noted to play important roles from both economic and social standpoints; however, enforcement of increasingly strict hygiene standards requires thorough knowledge of the adventitious microbiota of the departing dough. To this goal, sourdough as well as maize and rye flours from several geographic locations and in two different periods within the agricultural year were assayed for their microbiota in sequential steps of quantification and identification. More than 400 strains were isolated and taxonomic differentiation between them was via Biomerieux API galleries (375 of which were successfully identified) following preliminary biochemical and morphological screening. The dominant groups were yeasts and lactic acid bacteria (LAB). The most frequently isolated yeasts were Saccharomyces cerevisiae and Candida pelliculosa. The most frequently isolated LAB were (heterofermentative) Leuconostoc spp. and (homo-fermentative) Lactobacillus spp.; L. brevis, L. curvatus, and L. lactis ssp. lactis were the dominant species for the Lactobacillus genera; Lactococcus lactis ssp. lactis for lactococci; Enterococcus casseliflavus, E. durans, and E. faecium for enterococci; and Streptococcus constellantus and S. equinus for streptococci.


2009 ◽  
Vol 2009 ◽  
pp. 1-6 ◽  
Author(s):  
Abdelkader Mezaini ◽  
Nour-Eddine Chihib ◽  
Abdelkader Dilmi Bouras ◽  
Naima Nedjar-Arroume ◽  
Jean Pierre Hornez

In the present study, the antibacterial effect of 20 lactic acid bacteria isolates from a traditional cheese was investigated. 6 isolates showed antibacterial effect against Gram positive bacteria.Streptococcus thermophilusT2 strain showed the wide inhibitory spectrum against the Gram positive bacteria. Growth and bacteriocin production profiles showed that the maximal bacteriocin production, byS. thermophilusT2 cells, was measured by the end of the late-log phase (90 AUml−1) with a bacteriocine production rate of 9.3 (AUml−1)h−1. In addition, our findings showed that the bacteriocin, produced byS. thermophilusT2, was stable over a wide pH range (4–8); this indicates that such bacteriocin may be useful in acidic as well as nonacidic food. This preliminarily work shows the potential application of autochthonous lactic acid bacteria to improve safety of traditional fermented food.


2022 ◽  
Vol 8 ◽  
Author(s):  
Jie Yang ◽  
Tengqi Gao ◽  
Feng Ge ◽  
Hao Sun ◽  
Zihang Cui ◽  
...  

The demand for roasted seaweed sandwich (Porphyra yezoensis) product has risen in recent years. The product slicing process has created a huge number of scraps that are not utilized effectively. Three lactic acid bacteria (LAB) strains were used to ferment P. yezoensis sauces in this study, including Lactobacillus fermentum, Lactobacillus casei, Streptococcus thermophilus, and the mixed strains (1:1:1, v/v). The fermentation characteristics, antioxidant capacity in vitro, sensory properties, and flavoring substances of fermented P. yezoensis sauces were analyzed. After 21 days of fermentation, all LAB strains grew well in the P. yezoensis sauces, with protease activity increased to 6.6, 9.24, 5.06, and 5.5 U/mL, respectively. Also, the flavors of P. yezoensis sauces fermented with L. casei and L. fermentum were satisfactory. On this premise, gas chromatography-mass spectrometry (GC-MS) was used to investigate the changes in gustatory compounds in P. yezoensis sauces fermented with L. casei and L. fermentum. In general, 42 and 41 volatile flavor chemicals were identified after the fermentation of L. casei and L. fermentum. Furthermore, the fermented P. yezoensis sauce possessed greater DPPH scavenging activity and ferric-reducing ability power than the unfermented P. yezoensis. Overall, the flavor and taste of P. yezoensis sauce fermented by L. casei was superior.


Sign in / Sign up

Export Citation Format

Share Document