scholarly journals Comparative Study of Pure Mg and AZ91D as Sacrificial Anodes for Reinforced Cement Concrete Structures in Chloride Atmosphere

2018 ◽  
Vol 4 (8) ◽  
pp. 1750
Author(s):  
Yogesh Iyer Murthy ◽  
Sumit Gandhi ◽  
Abhishek Kumar

Comparative study of the corrosion behavior of pure Magnesium and AZ91D anodes in reinforced cement concrete was undertaken in the present work. The steel reinforcements were kept in contact with these anodes electrochemically in chloride atmosphere and the half-cell potential drop was observed. Bare steel reinforcements were tied to the anodes and were also kept in high chloride atmosphere to test the mechanical properties. The yield stress and ultimate tensile stress were found to decrease by approximately 50MPa while the reduction in percentage elongation is approximately 25% for reinforcements tied to AZ91D and pure Mg at the end of 80 days compared to fresh steel reinforcement. The rate of corrosion of pure Mg was reportedly slightly higher compared to AZ91D due to the presence of inter-metallics as inferred through micro-graphs.

2021 ◽  
Vol 32 (2) ◽  
pp. 110-113
Author(s):  
Albana Jano ◽  
Alketa Lame ◽  
Efrosini Kokalari

Abstract Concrete is more widely used than any other manmade material. The objective of this paper is to investigate the behavior of reinforced cement when migration corrosion and guar gum inhibitors are used. The concrete samples were exposed in aggressive media H2SO4 1 M and in the presence of 1∙10-3 M Cl-. Electrochemical measurements such as half-cell potential, polarization resistance and Tafel extrapolation methods were performed in order to obtain information on the corrosion behavior of the reinforcing steel in cement mortar. Results demonstrate high resistance polarization and low corrosion rate for concrete sample with inhibitor. The corrosion rate decreases approximately 95% in presence of locust bean gum and 80% in presence of migration inhibitor.


1993 ◽  
Vol 23 (6) ◽  
pp. 1443-1454 ◽  
Author(s):  
R.K. Dhir ◽  
M.R. Jones ◽  
M.J. McCarthy

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Suresh Kumar Arunachalam ◽  
Muthukannan Muthiah ◽  
Kanniga Devi Rangaswamy ◽  
Arunkumar Kadarkarai ◽  
Chithambar Ganesh Arunasankar

Purpose Demand for Geopolymer concrete (GPC) has increased recently because of its many benefits, including being environmentally sustainable, extremely tolerant to high temperature and chemical attacks in more dangerous environments. Like standard concrete, GPC also has low tensile strength and deformation capacity. This paper aims to analyse the utilization of incinerated bio-medical waste ash (IBWA) combined with ground granulated blast furnace slag (GGBS) in reinforced GPC beams and columns. Medical waste was produced in the health-care industry, specifically in hospitals and diagnostic laboratories. GGBS is a form of industrial waste generated by steel factories. The best option to address global warming is to reduce the consumption of Portland cement production and promote other types of cement that were not a pollutant to the environment. Therefore, the replacement in ordinary Portland cement construction with GPC is a promising way of reducing carbon dioxide emissions. GPC was produced due to an alkali-activated polymeric reaction between alumina-silicate source materials and unreacted aggregates and other materials. Industrial pollutants such as fly ash and slag were used as raw materials. Design/methodology/approach Laboratory experiments were performed on three different proportions (reinforced cement concrete [RCC], 100% GGBS as an aluminosilicate source material in reinforced geopolymer concrete [GRGPC] and 30% replacement of IBWA as an aluminosilicate source material for GGBS in reinforced geopolymer concrete [IGRGPC]). The cubes and cylinders for these proportions were tested to find their compressive strength and split tensile strength. In addition, beams (deflection factor, ductility factor, flexural strength, degradation of stiffness and toughness index) and columns (load-carrying ability, stress-strain behaviour and load-deflection behaviours) of reinforced geopolymer concrete (RGPC) were studied. Findings As shown by the results, compared to Reinforced Cement Concrete (RCC) and 100% GGBS based Reinforced Geopolymer Concrete (GRGPC), 30% IBWA and 70% GGBS based Reinforced Geopolymer Concrete (IGRGPC) (30% IBWA–70% GGBS reinforced geo-polymer concrete) cubes, cylinders, beams and columns exhibit high compressive strength, tensile strength, flexural strength, load-carrying ability, ultimate strength, stiffness, ductility and deformation capacity. Originality/value All the results were based on the experiments done in this research. All the result values obtained in this research are higher than the theoretical values.


2018 ◽  
Vol 7 (1) ◽  
pp. 126
Author(s):  
Latha M S ◽  
Revanasiddappa M ◽  
Naveen Kumar B M

An experimental investigation was carried out to study shear carrying capacity and ultimate flexural moment of reinforced cement concrete beam. Two series of simply supported beams were prepared by varying diameter and spacing of shear and flexural reinforcement. Beams of cross section 230 mm X 300 mm and length of 2000 mm. During testing, maximum load, first crack load, deflection of beams were recorded. Test results indicated that decreasing shear spacing and decreasing its diameter resulted in decrease in deflection of beam and increase in bending moment and shear force of beam.


Sign in / Sign up

Export Citation Format

Share Document