scholarly journals Assessment of Al-Sabtea Bridge under the Effects of Static Loadings

2018 ◽  
Vol 4 (11) ◽  
pp. 2680
Author(s):  
Ali Laftah Abbas ◽  
Qassim Yehya Hamood

The behavior and strength of composite for composite bridges relay on the connectors that used to connect the steel beams or girders with reinforced concrete deck slab. Different type of shear connectors that available in the market such as headed stud or steel channels are commonly welded to the top face of the steel section to prevent slip at the interface between the two different materials. In present paper, existing composite bridge built in Iraq is modeled using finite elements approach by ANSYS. The bridge is simulate by adopt real dimensions and geometry to check out the performance of connectors and strengths of composite girder under worst static loading conditions proposed by general Iraqi Standard Specification for Road and Bridges such as track, knife and military loadings. The analysis results indicate that the three types applied loading show that all stresses within the acceptable limits and did not reach high values compared capacities of these materials according to the AASHTO ASD code. The maximum stress at bottom face of steel girder is 114.7 MPa and the maximum deflection is 59 mm these values within limits of code. 

1992 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Veldanda ◽  
M. U. Hosain

This paper summarizes the results of tests performed on 48 push-out specimens to investigate the feasibility of using perfobond rib type shear connectors in composite beams with ribbed metal decks placed parallel to the steel beams. The perfobond rib shear connector is a flat steel plate containing a number of holes. The results indicate that perfobond rib connectors can be effectively used in composite beams with ribbed metal decks placed parallel to the steel beams. An appreciable improvement in performance was observed in test specimens when additional reinforcing bars were passed through the perfobond rib holes. Shank shear was the principal mode of failure in specimens with headed studs. In specimens with perfobond rib, failure was triggered by the longitudinal splitting of the concrete slab, followed by the crushing of concrete in front of the perfobond rib. Key words: composite beam, shear connector, perfobond rib, headed stud, push-out test, metal deck.


2015 ◽  
Vol 9 (1) ◽  
pp. 171-176 ◽  
Author(s):  
Cheng Haigen

Steel-concrete composite beams are composed of concrete slabs and steel girders by shear connectors. Due to the limited rigidity of shear connector, and the shrink & creep property of concrete, relative slippage exists between the concrete slab and steel girder under bending, and it is difficult to analyze the effect of those factors by the ordinary beam theory, the finite element method(FEM) and so on. A differential equation of equilibrium is constituted corresponding to the compatibility of deformation and the equilibrium of forces of steel-concrete composite beams under particular assumed condition. Finite difference method (FDM) and variation principle are used to solve the differential equation. An example of steel-concrete composite T girder is given to analyze the effect of slippage and concrete shrink & creep on its stress and deflection. The concrete slab stress increases with increased rigidity in the shear connectors. The stress of the steel girder and the deflection of the composite girder decrease with increment in the rigidity of the shear connectors.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3627
Author(s):  
Sherif A. Elsawaf ◽  
Saleh O. Bamaga

In this paper, the findings of numerical modeling of the composite action between normal concrete and Cold-Formed Steel (CFS) beams are presented. To obtain comprehensive structural behavior, the numerical model was designed using 3-D brick components. The simulation results were correlated to the experimental results of eight push tests, using three types of innovative shear connectors in addition to standard headed stud shear connectors, with two different thicknesses of a CFS channel beam. The proposed numerical model was found to be capable of simulating the failure mode of the push test as well as the behavior of shear connectors in order to provide composite action between the cold-formed steel beam and concrete using the concrete damaged plasticity model.


Author(s):  
Il-Sang Ahn ◽  
Methee Chiewanichakorn ◽  
Aaron F. Nottis ◽  
Jeffrey A. Carpenter ◽  
Stuart S. Chen ◽  
...  

This paper presents experimental results of the ultimate behavior of the negative moment region of a quarter-scale full model and a half-scale subassemblage model of a two-span continuous composite bridge of concrete deck slab on steel girder. The two specimens are based on a prototype bridge that has a large girder spacing [3,800 mm (13 ft)]. At the ultimate state, it is shown that a larger portion of the deck is activated to resist tensile stress compared with the effective width specified in the AASHTO load and resistance factor design bridge specifications. Also, a plastic hinge that forms at the internal support has enough rotational capacity (ductility) to enable development of a second plastic hinge within the span. Experimental results show a reasonably good match with accompanying finite element method analyses.


2019 ◽  
Vol 26 (1) ◽  
pp. 51-61
Author(s):  
Amer M. Ibrahim ◽  
Wissam D. Salman ◽  
Fahad M. Bahlol

Steel hollow sections used widely in many engineering applications as structural members. This paper aims to present a study about the flexural behavior of composite beams with steel tubes sections through a series of bending tests in order to study and examine the influence of using different shapes of steel tube section (square, rectangular and hexagonal) with the same shear connector type (headed stud or angle or perfobond) on the flexural behavior and the bending properties of these sections. As well as study the effect of using different shear connectors types (headed stud, angle and perfobond) in the same steel tube section (hexagonal or square or rectangular) on the flexural behavior of composite beams. The experimental program divided into two groups, the first consists of testing nine specimens which focusing on testing three types of steel section when using shear stud at first, angle at second, perfobond at third as shear connector type. Second group consists of testing nine specimens of composite beams too, this group focusing on testing every steel section (hexagonal or square or rectangular) alone when using three types of shear connectors with it. All specimens are with length, width and height equal to 2000, 400 and 130 mm respectively. The tested steel tubes have thickness of 2 mm, yield stress of 322 MPa and the ultimate strength of 390 MPa. The results showed that these shapes of hollow steel sections (hexagonal, square and rectangular) sustain the quality of services for the buildings, and these tested specimens are applicable by giving a distinctive strength and stiffness starting from 114 kN as ultimate load reaching to 170 kN. The experimental results proved that the perfobond and angle connector types are clearly effective shear connectors, shear connector of perfobond type increased the ultimate load of composite beams by (6.25-9.74) % compared with stud shear connector.


Author(s):  
Matthew Sjaarda ◽  
Jeffrey S. West ◽  
Scott Walbridge

This paper examines the reliability of welded stud shear connectors for steel-concrete composite bridge girders. A finite element model of a simply-supported bridge was created featuring link connector elements representing the shear studs between beam and shell elements, representing a steel girder and concrete deck, respectively. The model is programmed using a program interface to build a model including studs with random strengths. Using this approach, many analyses can be run in succession, with connectors failing between each analysis. This study considers the probabilistic characteristics of the welded studs and truck loading and recognizes the interaction between ULS and FLS. The example bridge employed in this study was designed according to the CSA S6-2014 code provisions. Based on the presented reliability analysis, an increase in the CSA S6-2014 24 MPa endurance limit of at least 1.45 times is found to be acceptable.


2021 ◽  
Author(s):  
Patrícia Vaňová ◽  
Vincent Kvočák

<p>Composite bridges with encased steel beams, or nowadays, rather encased steel continuous shear connectors are a welcome option for short span railway or road bridges. With lower construction height and easy construction of prefabricated composite beams it brings a new, complex, solution for replacement of older, overserved bridges, as well as for new tasks. At Technical University of Košice, Faculty of Civil Engineering a new designed of the steel perforated strip was developed. At Laboratory of Excellent Research several experiments for resistance finding were carried together with material tests. In this article the numerical analysis of push-out tests performed is closely described and the shear resistance of finite element model developed in Abaqus/CAE is compared to experimental results.</p>


2016 ◽  
Vol 691 ◽  
pp. 96-107
Author(s):  
Tomas J. Zivner ◽  
Rudolf B. Aroch ◽  
Michal M. Fabry

This paper deals with the slab concreting sequence and its influence on a composite steel and concrete continuous highway girder bridge. The bridge has a symmetrical composite two-girder structure with three spans of 60 m, 80 m, 60 m (i.e. a total length between abutments of 200.0 m). The horizontal alignment is straight. The top face of the deck is flat. The bridge is straight. The transverse cross-section of the slab is symmetrical with respect to the axis of the bridge. The total slab width is 12 m. The slab thickness varies from 0.4 m on main girders to 0.25 m at its free edges and 0.3075 m at its axis of symmetry. The center-to-center spacing between main girders is 7 m and the slab cantilever on either side is 2.5 m long. Every main girder has a constant depth of 2800 mm and the thicknesses of the upper and lower flanges are variable. The lower flange is 1200 mm wide whereas the upper flange is 1000 mm wide. The two main girders have transverse bracing at abutments and at internal supports and at regular intervals in every span. The material of concrete slab is C35/45 and of steel members S355. The on-site pouring of the concrete slab segments is performed by casting them in a selected order and is done after the launching of the steel two girder bridge. The paper presents several concreting sequences and their influence on the normal stresses and deflections of the composite bridge girder.


Sign in / Sign up

Export Citation Format

Share Document