scholarly journals Flexural Behavior of Concrete Composite Beams with New Steel Tube Section and Different Shear Connectors

2019 ◽  
Vol 26 (1) ◽  
pp. 51-61
Author(s):  
Amer M. Ibrahim ◽  
Wissam D. Salman ◽  
Fahad M. Bahlol

Steel hollow sections used widely in many engineering applications as structural members. This paper aims to present a study about the flexural behavior of composite beams with steel tubes sections through a series of bending tests in order to study and examine the influence of using different shapes of steel tube section (square, rectangular and hexagonal) with the same shear connector type (headed stud or angle or perfobond) on the flexural behavior and the bending properties of these sections. As well as study the effect of using different shear connectors types (headed stud, angle and perfobond) in the same steel tube section (hexagonal or square or rectangular) on the flexural behavior of composite beams. The experimental program divided into two groups, the first consists of testing nine specimens which focusing on testing three types of steel section when using shear stud at first, angle at second, perfobond at third as shear connector type. Second group consists of testing nine specimens of composite beams too, this group focusing on testing every steel section (hexagonal or square or rectangular) alone when using three types of shear connectors with it. All specimens are with length, width and height equal to 2000, 400 and 130 mm respectively. The tested steel tubes have thickness of 2 mm, yield stress of 322 MPa and the ultimate strength of 390 MPa. The results showed that these shapes of hollow steel sections (hexagonal, square and rectangular) sustain the quality of services for the buildings, and these tested specimens are applicable by giving a distinctive strength and stiffness starting from 114 kN as ultimate load reaching to 170 kN. The experimental results proved that the perfobond and angle connector types are clearly effective shear connectors, shear connector of perfobond type increased the ultimate load of composite beams by (6.25-9.74) % compared with stud shear connector.

2019 ◽  
Vol 12 (4) ◽  
pp. 41-49
Author(s):  
Fahad M. Bahlol ◽  
Amer M. Ibrahim ◽  
Wissam D. Salman ◽  
Humam A. Abdulhusain

The current paper aims to investigate the effect of steel tube thickness on the structural behavior of concrete composite beams with different steel tube sections. The experimental work of this study included a series of bending tests. The loading type used to study this effect on bending behavior of steel tubes was simply supported beam tested by two points load. Six composite beam specimens were performed and tested up to failure using three shapes of steel section (hexagonal, square and rectangular), every two specimens have the same shape of steel section. The type of shear connector was the headed stud for all specimens and to investigate the effect of thickness, this study used two thicknesses of steel tube sections of (2) mm and (3) mm. The tests showed improvement in the flexural behavior by increasing thickness of different steel section shapes, (50%) increasing in steel tube thickness led to increase the ultimate load by (32% - 34%). The ultimate slip at the ultimate load, for each specimen, is decreased by increasing the thickness of steel tube, the range of decreasing is ( 3.55% - 30.16% ).


2018 ◽  
Vol 7 (4.20) ◽  
pp. 174
Author(s):  
Alaa M. Al-Khekany ◽  
Labeeb S. Al-Yassri ◽  
Munaf A. Al-Ramahee ◽  
Saeed Abdul-Abbas

This research presents an experimental program to study the effect of using angle shear connectors instead of the headed stud on the flexural behavior of composite beams under negative bending moment (NBM). Both the angle and headed stud shear connectors used in this study have the same cross-sectional area. Five composite beams were casted and tested using three-point load configuration to ensure the NBM effect. Different parameters were included in this study such as the type of shear connector, bond interaction (partial and complete bond interaction) and arrangement of angle shear connectors. Two proposals method were suggested for angle setting in this study to investigate the structural behavior of the composite section. It has been found that, in the case of single angle shear connectors, the ultimate strength decreased by 4.12% compared with samples with the headed stud shear connectors. The direction of the angle setting has been shown to affect the flexural behavior of the composite section. 


1992 ◽  
Vol 19 (1) ◽  
pp. 1-10 ◽  
Author(s):  
M. R. Veldanda ◽  
M. U. Hosain

This paper summarizes the results of tests performed on 48 push-out specimens to investigate the feasibility of using perfobond rib type shear connectors in composite beams with ribbed metal decks placed parallel to the steel beams. The perfobond rib shear connector is a flat steel plate containing a number of holes. The results indicate that perfobond rib connectors can be effectively used in composite beams with ribbed metal decks placed parallel to the steel beams. An appreciable improvement in performance was observed in test specimens when additional reinforcing bars were passed through the perfobond rib holes. Shank shear was the principal mode of failure in specimens with headed studs. In specimens with perfobond rib, failure was triggered by the longitudinal splitting of the concrete slab, followed by the crushing of concrete in front of the perfobond rib. Key words: composite beam, shear connector, perfobond rib, headed stud, push-out test, metal deck.


Author(s):  
Shaik Heena ◽  
Syed Rizwan ◽  
A.B.S. Dadapeer

Concrete filled steel tubes (CFST) member have many advantages compared with the ordinary structural member made of steel or reinforced concrete. One of the main advantages is the interaction between the steel tube and concrete. Concrete delays the steel tube’s local buckling, whereas the steel tube confines the concrete and thereby increases the concrete’s strength. CFSTs are economical and permit rapid construction because the steel tube serves as formwork and reinforcement to the concrete fill, negating the need for either. The deformation capacity of the system is increased by the combined action of the concrete fill with the thin, ductile steel tube. The concrete fill significantly increases inelastic deformation capacity and the compressive stiffness and load capacity of the CFST member. In building construction concrete filled steel tubes are very widely used for columns in combination with steel or reinforced concrete beam. In this work totally 9 specimens were tested out of which 3 specimens were empty steel tubes and remaining 6 specimens were concrete filled with different bonding techniques. As it is prefabricated time consumption will be less in construction practice and due to confinement more ductility is expected which is very useful in earthquake resistant structures. Load carrying capacity of CFST almost doubled in comparison with empty steel tubes. Ultimate load carrying capacity of concrete filled steel tube beams almost doubled compared to empty steel tubes. Compared to empty steel tubes, strength increase of 67.19%, 97.48% and 114.84% was observed in normal CFST, CFST with sand blasting and CFST with diagonal shear connector beams respectively. Average ultimate load of EST was 105.66kN whereas average load of CFSTB, CFSTBWSB and CFSTBWDSC was 176.66, 208.66 and 227kN respectively. The maximum load was taken by the specimen CFSTBWDSC – 03 which was 231kN, it may be because of presence of diagonal shear connector inside the tube.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Xiang Li ◽  
Tao Yang ◽  
Yongbing Zhang ◽  
Yun Zhang ◽  
Taosheng Shen

Steel-concrete composite beams with corrugated steel webs (CSWs) usually have concrete flanges that are prone to crack under tension, and an innovative posttensioned composite beam (IPCB) with CSWs has been proposed previously to overcome this shortcoming. Here, an IPCB with CSWs is manufactured and submitted to a flexural test to investigate its flexural behavior, based on which finite element (FE) models with different parameters are developed and analyzed using the ANSYS software. The effects of the span-to-depth ratio, concrete compressive strength, initial effective prestress, width of the upper concrete flange, and yield strength of the steel tubes on the flexural behavior of the IPCBs with CSWs are discussed. Numerical results show that the span-to-depth ratio of the beam and the yield strength of the steel tube have a considerable effect on the ultimate load-carrying capacity of the IPCB, which increases by 48.2% when the depth of the CSWs is increased from 240 to 400 mm and by 21.8% when the yield strength of the steel tubes is increased from 295 to 395 MPa. The plane-section assumption is unsuitable for IPCBs. Almost all the unbonded posttensioning strands in the beams yield for the specimens at ultimate state. The normal stress is distributed unevenly across the width of the upper concrete flange, and the maximum shear lag coefficient is 1.17. Based on the numerical results, a calculation method is established to evaluate the bending moment resistance of an IPCB with CSWs. Comparison shows that the theoretical results in accordance with the proposed method agree well with the numerical results.


2020 ◽  
pp. 136943322098166
Author(s):  
Weiwei Lin

In this study, straight composite steel-concrete beams were tested to investigate their mechanical performance under combined negative bending and torsional moments. Two specimens were used in this study, and different ratios between the applied negative bending and torsional moments were induced. Load and deflection relationships, strain development on the steel main girder and shear connectors (stud), and the slip development on the steel-concrete interface were recorded in the test and reported in this paper. The results indicate that increase of torsional moment will result in the significant decrease of the load-carrying capacities (e.g. yield load and ultimate load) of the specimens. It was also found that the normal strains of stud shear connectors in such beams are very large and non-negligible compared to their shear strains. In addition, the maximum interface slip was found occurring at around the 1/4 span, and the support conditions and serious crack of the concrete were considered to be the main causes. The research results obtained in this study can provide references for the design and analysis of steel-concrete composite beams subjected to the combined negative bending and torsional moments.


Author(s):  
Mohammed Abdulhussein Al-Shuwaili ◽  
Alessandro Palmeri ◽  
Maria Teresa Lombardo

Push-out tests (POTs) have been widely exploited as an alternative to the more expensive full-scale bending tests to characterize the behaviour of shear connections in steel-concrete composite beams. In these tests, two concrete slabs are typically attached to a steel section with the connectors under investigation, which are then subjected to direct shear. The results allow quantifying the relationship between applied load and displacements at the steel-concrete interface. Since this relationship is highly influenced by the boundary conditions of POT samples, different experimental setups have been used, where the slabs are either restricted or free to slide horizontally, as researchers have tried to reduce any discrepancy between POT and full-scale composite beam testing. Based on a critical review of various POT configurations presented in the dedicated literature, this paper presents an efficient one-sided POT (OSPOT) method. While OSPOT and POT specimens are similar, in the proposed OPSPOT setup only one of the two slabs is directly loaded in each test, and the slab is free to move vertically. Thus, two results can be obtained from one specimen, i.e. one from each slab. A series of POTs and OSPOTs have been conducted to investigate the behaviour and the shear resistance of headed stud connectors through the two methods of testing. The results of this study than were compared with those of different POTs setups conducted by other researchers. The new OSPOT results show in general an excellent agreement with the analytical predictions offered by both British and European standards, as well as the estimated shear resistance proposed other researchers in the literature. These findings suggest that the proposed one-sided setup could be used as an efficient and economical option for conducting the POT, as it has the potential not only to double the number of results, but also to simplify the fabrication of the samples, which is important in any large experimental campaign, and to allow testing with limited capacity of the actuator. 


2011 ◽  
Vol 8 (1) ◽  
pp. 29-34
Author(s):  
M. Youcef ◽  
M. Mimoune ◽  
F. Mimoune

This paper describes the reliability analysis of shear connection in composite beams with profiled steel sheeting. The profiled steel sheeting had transverse ribs perpendicular to the steel beam. The level of safety of shear connection, and failure modes were determinate. An extensive parametric study was conducted to study the effects on the safety and behaviour of shear connection by changing the profiled steel sheeting geometries, the diameter and height of headed stud, as well as the strength of concrete. We compared the level safety calculated using the American specification, British standard and European code for headed stud shear connectors in composite slabs with profiled steel sheeting perpendicular to the steel beam. It is found that the design overestimated the level safety of shear connection.


2022 ◽  
Vol 253 ◽  
pp. 113816
Author(s):  
Shan Gao ◽  
Qi Bai ◽  
Lanhui Guo ◽  
Shao-Bo Kang ◽  
Anna Derlatka ◽  
...  

2019 ◽  
Vol 22 (11) ◽  
pp. 2476-2489 ◽  
Author(s):  
Pengjiao Jia ◽  
Wen Zhao ◽  
Yongping Guan ◽  
Jiachao Dong ◽  
Qinghe Wang ◽  
...  

This work presents an experimental study on the flexural behavior of steel tube slab composite beams subjected to pure bending. The main design elements considered in the work are the flange thickness, reinforcement ratio of high strength bolts, spacing between the tubes, and transverse patterns of the tube connections. Based on nine flexural experiments on simply supported steel tube slab specimens, the failure process and crack development in steel tube slab specimens, and their load–deflection curves are investigated. The results of the laboratory tests show that the welding of the bottom flange significantly improves the flexural capacity of the steel tube slab structure. In addition, a lower concrete’s compressive strength improves the ductility of the steel tube slab specimens. Moreover, the flexural capacities predicted from the design guidelines are in good agreement with the experimental test results. Finally, based on the numerical simulations using the ABAQUS software, a numerical model is established to further investigate the effect of the additional parameters on the flexural capacity of steel tube slab structures. The numerical results suggested that the diameter of the steel bolts and the reinforcement ratio have a limited effect on the flexural bearing capacity of the steel tube slab beams, and the ultimate bearing capacity increases linearly along with increase in the diameter of the steel bolts and the reinforcement ratio in a certain range.


Sign in / Sign up

Export Citation Format

Share Document