scholarly journals Mixing Method of Geomorphologic Classification and Borehole Data for Estimation of Average Shear-Wave Velocity and Distribution of Peak Ground Motion during the 2004 Niigata-Chuetsu Earthquake

2007 ◽  
Vol 7 (3) ◽  
pp. 1-12 ◽  
Author(s):  
Iwao SUETOMI ◽  
Eisuke ISHIDA ◽  
Yasuhiro FUKUSHIMA ◽  
Ryoji ISOYAMA ◽  
Sumio SAWADA
2018 ◽  
Vol 4 (12) ◽  
pp. 2937
Author(s):  
Amin Ghanbari ◽  
Younes Daghigh ◽  
Forough Hassanvand

The average shear wave velocity of the uppermost 30 m of earth (Vs30) is widely used in seismic geotechnical engineering and soil-structure interaction studies. In this regard, any given subsurface profile is assigned to a specific site class according to its average shear wave velocity. However, in a real-world scenario, entirely different velocity models could be considered in the same class type due to their identical average velocities. The objective of the present study is to underline some of the risks associated with solely using Vs30 as a classification tool. To do so, three imaginary soil profiles that are quite different in nature, but all with the same average Vs were considered and were subjected to the same earthquake excitation. Seismic records acquired at the ground surface demonstrated that the three sites have different ground motion amplifications. Then, the different ground responses were used to excite a five-story structure. Results confirmed that even sites from the same class can indeed exhibit different responses under identical seismic excitations. Our results demonstrated that caution should be practiced when large-contrast velocity models are involved as such profiles are prone to pronounced ground motion amplification. This study, which serves as link between soil dynamics and structural dynamics, warns practitioners about the risks associated with oversimplifying the subsurface profile. Such oversimplifications can potentially undermine the safety of existing or future structures.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Yan Yu ◽  
Walter J. Silva ◽  
Bob Darragh ◽  
Xiaojun Li

Several methods were used to estimateVs30from site profiles with borehole depths of about 20 m for the strong-motion stations located in Southwest China. The methods implemented include extrapolation (constant and gradient), Geomatrix Site Classification correlation with shear-wave velocity, and remote sensing (terrain and topography). The gradient extrapolation is the preferred choice of this study for sites with shear-wave velocity profile data. However, it is noted that the coefficients derived from the California data set are not applicable to sites in Southwest China. Due to the scarcity of borehole profiles data with depth of more than 30 m in Southwest China, 73 Kiknet profiles were used to generate new coefficients for gradient extrapolation. Fortunately, these coefficients provide a reasonable estimate ofVs30for sites in Southwest China. This study showedVs30could be estimated by the time-average shear-wave velocity (average slowness) of only 10 meters of depth. Furthermore, a medianVs30estimate based upon Geomatrix Classification is derived from the results of the gradient extrapolation using a regional calibration of the Geomatrix Classification withVs30. The results of this study can be applied to assignVs30to the sites without borehole data in Southwest China.


2006 ◽  
Vol 23 (1) ◽  
pp. 57s-68s ◽  
Author(s):  
Masashi MATSUOKA ◽  
Kazue WAKAMATSU ◽  
Kazuo FUJIMOTO ◽  
Saburoh MIDORIKAWA

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Dalia Munaff Naji ◽  
Muge K. Akin ◽  
Ali Firat Cabalar

Assessment of seismic site classification (SSC) using either the average shear wave velocity (VS30) or the average SPT-N values (N30) for upper 30 m in soils is the simplest method to carry out various studies including site response and soil-structure interactions. Either the VS30- or the N30-based SSC maps designed according to the National Earthquake Hazards Reduction Program (NEHRP) classification system are effectively used to predict possible locations for future seismic events. The main goal of this study is to generate maps using the Geographic Information System (GIS) for the SSC in Kahramanmaras city, influenced by both East Anatolian Fault and Dead Sea Fault Zones, using both VS30 and N30 values. The study also presents a series of GIS maps produced using the shear wave velocity (VS) and SPT-N values at the depths of 5 m, 10 m, 15 m, 20 m, and 25 m. Furthermore, the study estimates the bed rock level and generates the SSC maps for the average VS values through overburden soils by using the NEHRP system. The VS30 maps categorize the study area mainly under class C and limited number of areas under classes B and D, whereas the N30 maps classify the study area mainly under class D. Both maps indicate that the soil classes in the study area are different to a high extent. Eventually, the GIS maps complied for the purpose of urban development may be utilized effectively by engineers in the field.


2020 ◽  
Vol 36 (3) ◽  
pp. 1331-1358 ◽  
Author(s):  
Van-Bang Phung ◽  
Chin Hsiung Loh ◽  
Shu Hsien Chao ◽  
Norman A Abrahamson

A ground motion prediction equation (GMPE) is presented for computing the median and standard deviation of peak ground acceleration (PGA) and 5% damped pseudo-spectral acceleration (PSA) for periods between 0.01 s and 5.0 s for probabilistic seismic hazard analysis (PSHA) and engineering applications in Taiwan. An integrated strong motion dataset consisting of two subduction earthquake regions was selected from 3314 recordings from Taiwan with M4.5 to M7.1 and 3376 recordings from Japan with M6.5 to M9.1. This dataset was then used to validate, and refit where necessary, the function form provided by Abrahamson et al. for application to Taiwan subduction earthquakes. The proposed model accounts for the extrapolation behaviors associated with the large-magnitude scaling and the near-source scaling terms, both of which were developed empirically by using the combined Taiwan–Japan dataset. The distance attenuation and site term were developed specifically for the Taiwan region. The site term is based on two parameters; the time-averaged shear wave velocity of the top 30 m depth ( VS30) and the depth-to-the-shear wave velocity horizon of 1.0 km/s ( Z1.0).


Sign in / Sign up

Export Citation Format

Share Document