scholarly journals Prediction of Sediment Accumulation Model for Trunk Sewer Using Multiple Linear Regression and Neural Network Techniques

2019 ◽  
Vol 5 (1) ◽  
pp. 82 ◽  
Author(s):  
Rami Raad Ahmed Al-Ani ◽  
Basim Hussein Khudair Al-Obaidi

Sewer sediment deposition is an important aspect as it relates to several operational and environmental problems. It concerns municipalities as it affects the sewer system and contributes to sewer failure which has a catastrophic effect if happened in trunks or interceptors. Sewer rehabilitation is a costly process and complex in terms of choosing the method of rehabilitation and individual sewers to be rehabilitated.  For such a complex process, inspection techniques assist in the decision-making process; though, it may add to the total expenditure of the project as it requires special tools and trained personnel. For developing countries, Inspection could prohibit the rehabilitation proceeds. In this study, the researchers proposed an alternative method for sewer sediment accumulation calculation using predictive models harnessing multiple linear regression model (MLRM) and artificial neural network (ANN). AL-Thawra trunk sewer in Baghdad city is selected as a case study area; data from a survey done on this trunk is used in the modeling process. Results showed that MLRM is acceptable, with an adjusted coefficient of determination (adj. R2) in order of 89.55%. ANN model found to be practical with R2 of 82.3% and fit the data better throughout its range. Sensitivity analysis showed that the flow is the most influential parameter on the depth of sediment deposition.

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Mingjun Li ◽  
Junxing Wang

Deformation predicting models are essential for evaluating the health status of concrete dams. Nevertheless, the application of the conventional multiple linear regression model has been limited due to the particular structure, random loading, and strong nonlinear deformation of concrete dams. Conversely, the artificial neural network (ANN) model shows good adaptability to complex and highly nonlinear behaviors. This paper aims to evaluate the specific performance of the multiple linear regression (MLR) and artificial neural network (ANN) model in characterizing concrete dam deformation under environmental loads. In this study, four models, namely, the multiple linear regression (MLR), stepwise regression (SR), backpropagation (BP) neural network, and extreme learning machine (ELM) model, are employed to simulate dam deformation from two aspects: single measurement point and multiple measurement points, approximately 11 years of historical dam operation records. Results showed that the prediction accuracy of the multipoint model was higher than that of the single point model except the MLR model. Moreover, the prediction accuracy of the ELM model was always higher than the other three models. All discussions would be conducted in conjunction with a gravity dam study.


2015 ◽  
Vol 785 ◽  
pp. 676-681 ◽  
Author(s):  
Nor Shahida Razali ◽  
Nofri Yenita Dahlan

This paper presents the concept of International Performance Measurement and Verification Protocol (IPMVP) for determining energy saving at whole facility level for an office building in Malaysia. Regression analysis is used to develop baseline model from a set of baseline data which correlates baseline energy with appropriate independents variables, i.e. Cooling Degree Days (CDD) and Number of Working Days (NWD) in this paper. In determining energy savings, the baseline energy is adjusted to the same set condition of reporting period using energy cost avoidance approach. Two types of energy saving analyses have been presented in the case study; 1) Single linear regression for each independent variable, 2) Multiple linear regression for each independent variable. Results show that NWD has coefficient of determination, R2 higher than CDD which indicates that NWD has stronger correlation with the energy use than CDD in the building. Finding also shows that the R2 for multiple linear regression model are higher than single linear regression model. This shows the fact that more than one component are affecting the energy use in the building.


2018 ◽  
Vol 2 (3) ◽  
Author(s):  
Danial Jahed Armaghani

Reliable estimation of rock fragmentation is an important issue in the blasting operations in order to predict quality of the production. Since rock fragmentation is affected by various parameters such as blast pattern and rock mass characteristics, it is very difficult to have an appreciate prediction of it. This paper describes a new hybrid imperialism competitive algorithm (ICA)-artificial neural network (ANN) in order to solve shortcomings of ANN itself for prediction of rock fragmentation. In fact, the influence of ICA on ANN results was studied in this research. By investigating the related studies, the most important parameters of ICA were identified and a series of parametric studies for their determination were conducted. All models were built using 8 inputs and one output which is rock fragmentation. To have a fair comparison and show the capability of the new hybrid model, a pre-developed ANN model was also considered and constructed. Evaluation of the obtained results demonstrated that a higher ability of rock fragmentation prediction is received developing a hybrid ICA-ANN model. Coefficient of determination (R2) values of (0.949 and 0.813) and (0.941 and 0.819) were obtained for training and testing of ICA-ANN and ANN models, respectively which indicated that the proposed ICA-ANN model can be implemented better in improving performance capacity of ANN model in estimating rock fragmentation.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Şükrü Özşahin ◽  
Hilal Singer

In this study, an artificial neural network (ANN) model was developed to predict the gloss of thermally densified wood veneers. A custom application created with MATLAB codes was employed for the development of the multilayer feed-forward ANN model. The wood species, temperature, pressure, measurement direction, and angle of incidence were considered as the model inputs, while the gloss was the output of the ANN model. Model performance was evaluated by using the mean absolute percentage error (MAPE), the root mean square error (RMSE), and the coefficient of determination (R²). It was observed that the ANN model yielded very satisfactory results with acceptable deviations. The MAPE, RMSE, and R2 values of the testing period of the ANN model were found as 8.556%, 1.245, and 0.9814, respectively. Consequently, this study could be useful for the wood industry to predict the gloss with less number of tiring experimental activities.


2017 ◽  
Vol 10 (1) ◽  
pp. 13
Author(s):  
Jimmy Saputra Sebayang ◽  
Budi Yuniarto

Multiple Linear Regression is a statistical approach most commonly used in performing predictive data modeling. One of the methods that can be used in estimating the parameters of the model on Multiple Linear Regression is Ordinary Least Square. It has classical assumptions requirements and often the assumptions are not satisfied. Another method that can be used as an alternative data modeling is Artificial Neural Network. It is  a free-distribution estimator because there's no assumptions that have to be satisfied.  However, modeling data using ANN has some problems such as selection of network topology, learning parameters and weight initialization. Genetic Algorithm method can be used to solve those problems. A set of simulation data was generated to test the reliability of ANN-GA model compared to Multiple Linear Regression model. Model comparison experiments indicate that ANN-GA model are better than Multiple Linear Regression model for estimating simulation data both on the data training and data testing.Keywords:Neural Network, Genetic Algorithm, Ordinary Least Square


2016 ◽  
Vol 48 (5) ◽  
pp. 1214-1225 ◽  
Author(s):  
Xue Li ◽  
Jian Sha ◽  
Zhong-liang Wang

Dissolved oxygen (DO) is an important indicator reflecting the healthy state of aquatic ecosystems. The balance between oxygen supply and consuming in the water body is significantly influenced by physical and chemical parameters. This study aimed to evaluate and compare the performance of multiple linear regression (MLR), back propagation neural network (BPNN), and support vector machine (SVM) for the prediction of DO concentration based on multiple water quality parameters. The data set included 969 samples collected from rivers in China and the 16 predicted variables involved physical factors, nutrients, organic substances, and metal ions, which would affect the DO concentrations directly or indirectly by influencing the water–air exchange, the growth of water plants, and the lives of aquatic animals. The models optimized by particle swarm optimization (PSO) algorithm were calibrated and tested, with nearly 80% and 20% data, respectively. The results showed that the PSO-BPNN and PSO-SVM had better predicted performances than linear regression methods. All of the evaluated criteria, including coefficient of determination, mean squared error, and absolute relative errors suggested that the PSO-SVM model was superior to the MLR and PSO-BPNN for DO prediction in the rivers of China with limited knowledge of other information.


Sign in / Sign up

Export Citation Format

Share Document