scholarly journals Numerical method of pipeline hydraulics identification at turbulent flow of viscous liquids

2019 ◽  
Vol 3 (2) ◽  
pp. 118-124
Author(s):  
Kh. M. Gamzaev ◽  
1982 ◽  
Author(s):  
D. A. Fraser ◽  
J. H. G. Howard ◽  
W. C. Lennox

A three-dimensional turbulent flow analysis method is described based on transformations of the equations to follow an arbitrary curved passage center-line and allowing for passage area and aspect ratio variations. The numerical method is arranged to allow either parabolic or partially parabolic solution methods in the main passage direction. The method has been tested for radial turbomachine elements and comparisons are included with measured internal passage flows in a radial impeller.


Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

Viscous liquids have to be homogenized in continuous operations in many branches of processing industries; and therefore, fluid mixing plays a critical role in the success or failure of many industrial processes. Consequences of improper mixing include non-reproducible processing conditions and lowered product quality, resulting in the need for more elaborate downstream processes and increased costs. The range of practical flow Reynolds numbers for KOMAX static mixers in industry is usually from moderate values (Re ≈ 0) to very large values (e.g. Re ≈ 5,000,000). However, most of industrial applicants have a very small flow to moderate Reynolds numbers (e.g. Re ≈ 5,000). This paper presents an improved understanding of the turbulent flow pattern for single-phase liquids through the mixer. Large-Eddy Simulation (LES) model is applied to the flow in a KOMAX static mixer to calculate the flow velocities, pressure drops, etc. Using a variety of predictive tools, the mixing results are obtained.


2005 ◽  
Vol 127 (3) ◽  
pp. 467-483 ◽  
Author(s):  
Ramin K. Rahmani ◽  
Theo G. Keith ◽  
Anahita Ayasoufi

In many branches of processing industries, viscous liquids need to be homogenized in continuous operations. Consequently, fluid mixing plays a critical role in the success or failure of these processes. Static mixers have been utilized over a wide range of applications such as continuous mixing, blending, heat and mass transfer processes, chemical reactions, etc. This paper describes how static mixing processes of single-phase viscous liquids can be simulated numerically, presents the flow pattern through a helical static mixer, and provides useful information that can be extracted from the simulation results. The three-dimensional finite volume computational fluid dynamics code used here solves the Navier-Stokes equations for both laminar and turbulent flow cases. The turbulent flow cases were solved using k-ω model and Reynolds stress model (RSM). The flow properties are calculated and the static mixer performance for different Reynolds numbers (from creeping flows to turbulent flows) is studied. A new parameter is introduced to measure the degree of mixing quantitatively. Furthermore, the results obtained by k-ω and RSM turbulence models and various numerical details of each model are compared. The calculated pressure drop is in good agreement with existing experimental data.


Sign in / Sign up

Export Citation Format

Share Document