scholarly journals THE FEATURES OF STRESS-INDUCED CHANGES IN ERYTHROCYTE ADRENOREACTIVITY AND HEART RATE IN CASE OF β-ADRENORECEPTOR BLOCKADE AND STIMULATION OF THE NORADRENERGIC SYSTEM

Author(s):  
Evgeniya Kuryanova ◽  
Andrey Tryasuchev ◽  
Victor Stupin
2017 ◽  
Vol 59 (2) ◽  
pp. 069-080
Author(s):  
Andrey V. Tryasuchev ◽  
◽  
Eugenia V. Kuryanova ◽  
Kristina I. Zinoveva ◽  
Elena A. Myasnikova ◽  
...  

1981 ◽  
Vol 240 (2) ◽  
pp. G130-G140
Author(s):  
R. L. Dormer ◽  
J. A. Williams

In a prior study, we demonstrated that pancreatic secretagogues increased both the uptake into and washout of 45Ca2+ from isolated mouse pancreatic acini. The net result of these processes was an initial fall in total acinar cell Ca2+ content. In the present study, we have employed subcellular fractionation of acini under conditions that minimized posthomogenization redistribution of Ca2+ in order to localize those organelles involved in intracellular Ca2+ fluxes. Homogenization and differential centrifugation of acini, preloaded with 45Ca2+ and subjected to a period of washout, showed that carbachol induced an increased loss of 45Ca2+ from all fractions isolated. The high-speed microsomal fraction lost 45Ca2+ to a greater extent than did whole acini; measurement of total Ca2+ by atomic absorption spectrometry showed a net loss of Ca2+ from this fraction. Purification of the lower-speed fractions indicated that carbachol increased 45Ca2+ exchange with both zymogen granules and mitochondria, but net Ca2+ levels in these organelles were unchanged. It was concluded that stimulation of pancreatic acini by carbachol results in the release of calcium from a microsomal compartment leading to a rise in cytoplasmic Ca2+, increased exchange with granule and mitochondrial Ca2+, and increased efflux of Ca2+ from the cell.


2020 ◽  
Vol 43 (10) ◽  
pp. 1057-1067 ◽  
Author(s):  
Gean Domingos-Souza ◽  
Fernanda Machado Santos-Almeida ◽  
César Arruda Meschiari ◽  
Nathanne S. Ferreira ◽  
Camila A. Pereira ◽  
...  

2021 ◽  
pp. 193229682110074
Author(s):  
Mats Koeneman ◽  
Marleen Olde Bekkink ◽  
Lian van Meijel ◽  
Sebastian Bredie ◽  
Bastiaan de Galan

Background: People with impaired awareness of hypoglycemia (IAH) are at elevated risk of severe, potentially hazardous, hypoglycemia and would benefit from a device alerting to hypoglycemia. Heart rate variability (HRV) changes with hypoglycemia due to sympathetic activity. Since IAH is associated with suppressed sympathetic activity, we investigated whether hypoglycemia elicits a measurable change in HRV in patients with T1D and IAH. Method: Eligible participants underwent a modified hyperinsulinemic euglycemic hypoglycemic clamp (glucose nadir, 43.1 ± 0.90 mg/dl), while HRV was measured by a VitalConnect HealthPatch. Measurements of HRV included Root Mean Square of the Successive Differences (RMSSD) and low to high frequency (LF:HF) ratio. Wilcoxon rank-sum test was used for testing within-subject HRV changes. Results: We included 12 participants (8 female, mean age 57 ± 12 years, mean HbA1c 57 ± 5 mmol/mol (7.4 ± 0.4%)). Symptoms increased from 4.0 (1.5-7.0) at euglycemia to 7.5 (5.0-11.0) during hypoglycemia ( P = .003). In response to hypoglycemia, the LF:HF ratio and RMSSD increased when normalized for data obtained during euglycemia (both P < .01). The LF:HF ratio increased in 6 participants (50%) and declined in one other participant (8%). The RMSSD decreased in 3 (25%) and increased in 4 (33%) participants. In 2 patients, no change in HRV could be detected in response to hypoglycemia. Conclusions: This study reveals that hypoglycemia-induced changes in HRV are retained in the majority of people with T1D and IAH, and that these changes can be detected by a wearable device. Real-time HRV seems usable for detection of hypoglycemia in patients with IAH.


1980 ◽  
Vol 239 (1) ◽  
pp. R137-R142 ◽  
Author(s):  
J. Ciriello ◽  
F. R. Calaresu

To investigate the role of the paraventricular (PAH) and supraoptic (SON) nuclei in regulation of the cardiovascular system experiments were done in 26 cats anesthetized with alpha-chloralose, paralyzed, and artificially ventilated. Electrical stimulation of histologically verified sites in the region of the PAH and SON elicited increases in arterial pressure in bilaterally vagotomized animals and increases in heart rate both in spinal (C2) animals and in animals bilaterally vagotomized, In addition, stimulation of either the PAH or SON inhibited the reflex vagal bradycardia elicited by stimulation of the carotid sinus nerve (CSN) and bilateral lesions of these areas increased the magnitude of the response. On the other hand, stimulation and lesions of these hypothalamic regions did not alter the magnitude of the cardiovascular responses to stimulation of the aortic depressor nerve. These results demonstrate that stimulation of the PAH and SON elicit cardiovascular responses due to reciprocal changes in activity of the parasympathetic and sympathetic nervous systems and that these structures maintain a tonic inhibitory influence on the heart rate component of the CSN reflex.


1960 ◽  
Vol 199 (6) ◽  
pp. 1115-1120 ◽  
Author(s):  
B. Lendrum ◽  
H. Feinberg ◽  
E. Boyd ◽  
L. N. Katz

Variation in contractile force of the isovolumic contracting left ventricle of the dog was studied in open-chested in situ hearts. The electrocardiogram and intraventricular pressures were recorded at various heart volumes. Spontaneous changes in heart rate and rhythm occurred at all volumes. Isovolumic systolic pressure development (contractile force) varied with rate and rhythm. Contractile force increased with heart rate (treppe) regardless of pacemaker origin. When a premature beat was followed by a compensatory pause, the premature beat showed a decrease and the next beat an increase in contractile force (postextrasystolic potentiation). The magnitude of the changes varied directly with the prematurity of the beat. Mechanical alternans was observed with electrical alternans, despite the absence of significant volume change. Rate-induced changes, postextrasystolic potentiation and mechanical alternans were additive when they occurred simultaneously. For practical purposes, ventricular volume (filling), hence muscle fiber length, remained constant during these rate and rhythm change, therefore could not affect the strength of contraction. Contractile force changes directly attributable to rate and rhythm changes do, therefore, occur in the intact mammalian heart.


1992 ◽  
Vol 72 (5) ◽  
pp. 1749-1753 ◽  
Author(s):  
C. E. Negrao ◽  
E. D. Moreira ◽  
M. C. Santos ◽  
V. M. Farah ◽  
E. M. Krieger

The present investigation was undertaken to evaluate the vagal function of trained (T) and sedentary (S) rats by use of different approaches in the same animal. After 13 wk of exercise training (treadmill for 1 h 5 times/wk at 26.8 m/min and 15% grade), T rats had a resting heart rate (HR) slightly but significantly lower than S rats (299 +/- 3 vs. 308 +/- 3 beats/min). T rats had marked reduction of the intrinsic HR (329 +/- 4 vs. 369 +/- 5 beats/min) after blockade by methylatropine and propranolol. They also exhibited depressed vagal and sympathetic tonus. Baroreflex bradycardia (phenylephrine injections) was reduced, bradycardic responses produced by electrical stimulation of the vagus were depressed, and responses to methacholine injection were decreased in T rats. Therefore several evidences of vagal function impairment were observed in T rats. The resting bradycardia after exercise training is more likely to be dependent on alterations of the pacemaker cells, inasmuch as the intrinsic HR was markedly reduced.


Sign in / Sign up

Export Citation Format

Share Document