scholarly journals SIMULATION OF SINGLE CRYSTAL ONE DIMENSIONAL ZnO RODS ARRAY GROWTH PROCESS

Author(s):  
Andrey Sharapov ◽  
Igor Matyushkin

In this work, the formation of zinc oxide arrows by gas-phase growth on the surface of silicon oxide is simulated.

2016 ◽  
Vol 4 (26) ◽  
pp. 6336-6344 ◽  
Author(s):  
Zhaofan Liu ◽  
Paifeng Luo ◽  
Wei Xia ◽  
Shengwen Zhou ◽  
Jigui Cheng ◽  
...  

Here we report a low-temperature and rapid CVD method with the incorporation of NH4Cl for fabricating efficient PSCs, and also reveal the key role of Cl in the gas-phase growth process of perovskites.


2021 ◽  
Vol 263 ◽  
pp. 124376
Author(s):  
Ahmed A. Askar ◽  
Mohamed S. Selim ◽  
Sherif A. El-Safty ◽  
Ahmed I. Hashem ◽  
Mahmoud M. Selim ◽  
...  

2004 ◽  
Vol 834 ◽  
Author(s):  
A. A. Fedyanin ◽  
D. Kobayashi ◽  
K. Nishimura ◽  
H. Uchida ◽  
M. Inoue ◽  
...  

ABSTRACTThe fabrication of one-dimensional magnetophotonic crystals (MPC) composed from Bi-substituted yttrium-iron-garnet films separated by the silicon oxide layers is presented. The enhancement of the Faraday rotation angle is observed at the spectral regions of the photonic band gap edges. The effective Faraday rotation achieves the values up to 1.5 degrees per micron at 1100-nm-wavelength.


1997 ◽  
Vol 52 (12) ◽  
pp. 1467-1470 ◽  
Author(s):  
Petra Wollesen ◽  
Joachim W. Kaiser ◽  
Wolfgang Jeitschko

Abstract The five compounds LnZnSbO (Ln = La - Nd, Sm) were prepared by annealing cold-pressed pellets of the lanthanoids, zinc oxide, and antimony, or by reacting these components in a NaCl/KCl flux. They crystallize with the tetragonal ZrCuSiAs type structure, which was refined from single-crystal X-ray data of CeZnSbO : P 4/nmm, a = 419.76(4), c = 947.4(1) pm, Z = 2, R = 0.022 for 165 structure factors and 12 variable parameters. Chemical bonding in this and the formally isotypic compound CeZn1-xSb2 is briefly discussed.


2008 ◽  
Vol 8 (16) ◽  
pp. 4855-4864 ◽  
Author(s):  
C. S. Boxe ◽  
A. Saiz-Lopez

Abstract. We utilize a multiphase model, CON-AIR (Condensed Phase to Air Transfer Model), to show that the photochemistry of nitrate (NO3−) in and on ice and snow surfaces, specifically the quasi-liquid layer (QLL), can account for NOx volume fluxes, concentrations, and [NO]/[NO2] (γ=[NO]/[NO2]) measured just above the Arctic and coastal Antarctic snowpack. Maximum gas phase NOx volume fluxes, concentrations and γ simulated for spring and summer range from 5.0×104 to 6.4×105 molecules cm−3 s−1, 5.7×108 to 4.8×109 molecules cm−3, and ~0.8 to 2.2, respectively, which are comparable to gas phase NOx volume fluxes, concentrations and γ measured in the field. The model incorporates the appropriate actinic solar spectrum, thereby properly weighting the different rates of photolysis of NO3− and NO2−. This is important since the immediate precursor for NO, for example, NO2−, absorbs at wavelengths longer than nitrate itself. Finally, one-dimensional model simulations indicate that both gas phase boundary layer NO and NO2 exhibit a negative concentration gradient as a function of height although [NO]/[NO2] are approximately constant. This gradient is primarily attributed to gas phase reactions of NOx with halogens oxides (i.e. as BrO and IO), HOx, and hydrocarbons, such as CH3O2.


Author(s):  
Ahmet Karadag ◽  
Hümeyra Pasaoglu ◽  
Gökhan Kastas ◽  
Orhan Büyükgüngör

AbstractThe cyano-bridged heteronuclear coordination polymer of zinc(II)/nickel(II) has been prepared by N-(2-hydroxyethyl)-ethylendiamine (hydet-en), alternatively named 2-(2-aminoethylamino)-ethanol and characterised by IR and thermal analysis. In the bimetallic complex, the decomposition of hydet-en ligands is seen to be endothermic whereas that of the cyano ligands is found to be exothermic. The crystal structure of the complex has been determined by single-crystal X-ray diffraction. The crystal structure of the zinc(II)-nickel(II) complex consists of a one-dimensional polymeric chain –Zn(hydet-en)


Sign in / Sign up

Export Citation Format

Share Document