scholarly journals VLADIMIR ALEXANDROVICH ARTEMIEV - MORE THAN 60 SEA EXPEDITIONS FROM ARCTIC TO ANTARCTIC

2020 ◽  
Vol 48 (2) ◽  
pp. 199-207
Author(s):  
O. V. Kopelevich

The article is dedicated to the 70th birthday of Vladimir Aleksandrovich Artemiev, senior researcher at the Ocean Optics Laboratory of the IO RAS. This is a unique electronics specialist who directly performs scientific research and provides this opportunity to others. V.A. Artemyev has been developing and improving optical equipment for marine expeditionary research for over 40 years; Among the devices he developed are an underwater irradiance meter (Alfamer device), three types of submersible transparent meters (PUM, PUM-A, PUM-200). Member of more than 60 sea expeditions from the Arctic to the Antarctic and about two dozen coastal marine. Conducted measurements of the underwater brightness of solar radiation at depths of up to 300 m in the Philippine Sea, diving on the Pysis underwater manned vehicle (PA), and in the Black Sea on the Argus PA. Vladimir Aleksandrovich is an irreplaceable expeditionary employee both in terms of his business and human qualities: contact, benevolent, always ready to help, creating a friendly atmosphere in the team. Coauthor of over 80 scientific publications and one invention patent. Has state awards.

1972 ◽  
Vol 72 (1) ◽  
pp. 273-275
Author(s):  
I. A. Fedosseyev ◽  
A. F. Plakhotnick

Though Russia, in contrast with England, had no broad access to the oceans, Russian oceanographers always took a great interest in the world ocean investigations. To confirm this we would first of all like to mention the Russian cruises around the world, made by I. F. Krusenstern and Ju. F. Lisjansky in 1803–06, V. M. Golovnin in 1806–13 and 1817–19, M. P. Lazarev in 1819–21 and 1822–25 (the second voyage, the main result of which was the discovery of the Antarctic Continent, was made together with F. F. Bellingshauzen), O. E. Kotsebu in 1815–18 and 1823–26, and F. O. Litke in 1826–29. The names of several Russian explorers who carried on important work in various parts of the Arctic and the Pacific Oceans in different periods of the nineteenth century are well known. At one time valuable results of the oceanological investigations, carried out by Admiral S. O. Makarov on the ship Vitjaz in the Pacific Ocean in 1886–89, attracted much attention. The fact that Vitjaz is lettered on the pediment of the Oceanographical Museum of Monaco among the ten ships most distinguished in oceanographical explorations from the whole world testifies to the scientific importance of Makarov's investigations.


2011 ◽  
Vol 78 (2) ◽  
pp. 549-559 ◽  
Author(s):  
Thibault Varin ◽  
Connie Lovejoy ◽  
Anne D. Jungblut ◽  
Warwick F. Vincent ◽  
Jacques Corbeil

ABSTRACTPolar and alpine microbial communities experience a variety of environmental stresses, including perennial cold and freezing; however, knowledge of genomic responses to such conditions is still rudimentary. We analyzed the metagenomes of cyanobacterial mats from Arctic and Antarctic ice shelves, using high-throughput pyrosequencing to test the hypotheses that consortia from these extreme polar habitats were similar in terms of major phyla and subphyla and consequently in their potential responses to environmental stresses. Statistical comparisons of the protein-coding genes showed similarities between the mats from the two poles, with the majority of genes derived fromProteobacteriaandCyanobacteria; however, the relative proportions differed, with cyanobacterial genes more prevalent in the Antarctic mat metagenome. Other differences included a higher representation ofActinobacteriaandAlphaproteobacteriain the Arctic metagenomes, which may reflect the greater access to diasporas from both adjacent ice-free lands and the open ocean. Genes coding for functional responses to environmental stress (exopolysaccharides, cold shock proteins, and membrane modifications) were found in all of the metagenomes. However, in keeping with the greater exposure of the Arctic to long-range pollutants, sequences assigned to copper homeostasis genes were statistically (30%) more abundant in the Arctic samples. In contrast, more reads matching the sigma B genes were identified in the Antarctic mat, likely reflecting the more severe osmotic stress during freeze-up of the Antarctic ponds. This study underscores the presence of diverse mechanisms of adaptation to cold and other stresses in polar mats, consistent with the proportional representation of major bacterial groups.


2007 ◽  
Vol 59 (2) ◽  
pp. 366-376 ◽  
Author(s):  
Katia Comte ◽  
Marie Å Abacká ◽  
Alyssa Carré-Mlouka ◽  
Josef Elster ◽  
Jiří Komárek

2014 ◽  
Vol 26 (5) ◽  
pp. 491-501 ◽  
Author(s):  
Sandra Pucciarelli ◽  
Federica Chiappori ◽  
Raghul Rajan Devaraj ◽  
Guang Yang ◽  
Ting Yu ◽  
...  

AbstractWe identified two ice-binding protein (IBP) sequences, named EFsymbAFP and EFsymbIBP, from a putative bacterial symbiont of the Antarctic psychrophilic ciliate Euplotes focardii. EFsymbAFP is 57.43% identical to the antifreeze protein (AFP) from the Stigmatella aurantiaca strain DW4/3-1, which was isolated from the Victoria Valley lower glacier. EFsymbIBP is 53.38% identical to the IBP from the Flavobacteriaceae bacterium strain 3519-10, isolated from the glacial ice of Lake Vostok. EFsymbAFP and EFsymbIBP are 31.73% identical at the amino acid level and are organized in tandem on the bacterial chromosome. The relatively low sequence identity and the tandem organization, which appears unique to this symbiont, suggest an occurrence of horizontal gene transfer (HGT). Structurally, EFsymbAFP and EFsymbIBP are similar to the AFPs from the snow mould fungus Typhula ishikariensis and from the Arctic yeast Leucosporidium sp. AY30. A phylogenetic analysis showed that EFsymbAFP and EFsymbIBP cluster principally with the IBP sequences from other Antarctic bacteria, supporting the view that these sequences belong to an Antarctic symbiontic bacterium of E. focardii. These results confirm that IBPs have a complex evolutionary history, which includes HGT events, most probably due to the demands of the environment and the need for rapid adaptation.


2000 ◽  
Vol 12 (3) ◽  
pp. 257-257 ◽  
Author(s):  
Andrew Clarke

Theodosius Dobzhansky once remarked that nothing in biology makes sense other than in the light of evolution, thereby emphasising the central role of evolutionary studies in providing the theoretical context for all of biology. It is perhaps surprising then that evolutionary biology has played such a small role to date in Antarctic science. This is particularly so when it is recognised that the polar regions provide us with an unrivalled laboratory within which to undertake evolutionary studies. The Antarctic exhibits one of the classic examples of a resistance adaptation (antifreeze peptides and glycopeptides, first described from Antarctic fish), and provides textbook examples of adaptive radiations (for example amphipod crustaceans and notothenioid fish). The land is still largely in the grip of major glaciation, and the once rich terrestrial floras and faunas of Cenozoic Gondwana are now highly depauperate and confined to relatively small patches of habitat, often extremely isolated from other such patches. Unlike the Arctic, where organisms are returning to newly deglaciated land from refugia on the continental landmasses to the south, recolonization of Antarctica has had to take place by the dispersal of propagules over vast distances. Antarctica thus offers an insight into the evolutionary responses of terrestrial floras and faunas to extreme climatic change unrivalled in the world. The sea forms a strong contrast to the land in that here the impact of climate appears to have been less severe, at least in as much as few elements of the fauna show convincing signs of having been completely eradicated.


2005 ◽  
Vol 5 (1) ◽  
pp. 961-1006 ◽  
Author(s):  
M. K. van Aalst ◽  
J. Lelieveld ◽  
B. Steil ◽  
C. Brühl ◽  
P. Jöckel ◽  
...  

Abstract. We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model’s meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.


Sign in / Sign up

Export Citation Format

Share Document