scholarly journals Stratospheric temperatures and tracer transport in a nudged 4-year middle atmosphere GCM simulation

2005 ◽  
Vol 5 (1) ◽  
pp. 961-1006 ◽  
Author(s):  
M. K. van Aalst ◽  
J. Lelieveld ◽  
B. Steil ◽  
C. Brühl ◽  
P. Jöckel ◽  
...  

Abstract. We have performed a 4-year simulation with the Middle Atmosphere General Circulation Model MAECHAM5/MESSy, while slightly nudging the model’s meteorology in the free troposphere (below 113 hPa) towards ECMWF analyses. We show that the nudging 5 technique, which leaves the middle atmosphere almost entirely free, enables comparisons with synoptic observations. The model successfully reproduces many specific features of the interannual variability, including details of the Antarctic vortex structure. In the Arctic, the model captures general features of the interannual variability, but falls short in reproducing the timing of sudden stratospheric warmings. A 10 detailed comparison of the nudged model simulations with ECMWF data shows that the model simulates realistic stratospheric temperature distributions and variabilities, including the temperature minima in the Antarctic vortex. Some small (a few K) model biases were also identified, including a summer cold bias at both poles, and a general cold bias in the lower stratosphere, most pronounced in midlatitudes. A comparison 15 of tracer distributions with HALOE observations shows that the model successfully reproduces specific aspects of the instantaneous circulation. The main tracer transport deficiencies occur in the polar lowermost stratosphere. These are related to the tropopause altitude as well as the tracer advection scheme and model resolution. The additional nudging of equatorial zonal winds, forcing the quasi-biennial oscillation, sig20 nificantly improves stratospheric temperatures and tracer distributions.

2015 ◽  
Vol 72 (5) ◽  
pp. 2109-2130 ◽  
Author(s):  
Ryosuke Shibuya ◽  
Kaoru Sato ◽  
Yoshihiro Tomikawa ◽  
Masaki Tsutsumi ◽  
Toru Sato

Abstract Multiple tropopauses (MTs) defined by the World Meteorological Organization are frequently detected from autumn to spring at Syowa Station (69.0°S, 39.6°E). The dynamical mechanism of MT events was examined by observations of the first mesosphere–stratosphere–troposphere (MST) radar in the Antarctic, the Program of the Antarctic Syowa MST/Incoherent Scatter (IS) Radar (PANSY), and of radiosondes on 8–11 April 2013. The MT structure above the first tropopause is composed of strong temperature fluctuations. By a detailed analysis of observed three-dimensional wind and temperature fluctuation components, it is shown that the phase and amplitude relations between these components are consistent with the theoretical characteristics of linear inertia–gravity waves (IGWs). Numerical simulations were performed by using a nonhydrostatic model. The simulated MT structures and IGW parameters agree well with the observation. In the analysis using the numerical simulation data, it is seen that IGWs were generated around 65°S, 15°E and around 70°S, 15°E, propagated eastward, and reached the region above Syowa Station when the MT event was observed. These IGWs were likely radiated spontaneously from the upper-tropospheric flow around 65°S, 15°E and were forced by strong southerly surface winds over steep topography (70°S, 15°E). The MT occurrence is attributable to strong IGWs and the low mean static stability in the polar winter lower stratosphere. It is also shown that nonorographic gravity waves associated with the tropopause folding event contribute to 40% of the momentum fluxes, as shown by a gravity wave–resolving general circulation model in the lower stratosphere around 65°S. This result indicates that they are one of the key components for solving the cold-bias problem found in most climate models.


2012 ◽  
Vol 2012 ◽  
pp. 1-12
Author(s):  
S. Brand ◽  
K. Dethloff ◽  
D. Handorf

Based on 150-year equilibrium simulations using the atmosphere-ocean-sea ice general circulation model (AOGCM) ECHO-GiSP, the southern hemisphere winter circulation is examined focusing on tropo-stratosphere coupling and wave dynamics. The model covers the troposphere and strato-mesosphere up to 80 km height and includes an interactive stratospheric chemistry. Compared to the reference simulation without interactive chemistry, the interactive simulation shows a weaker polar vortex in the middle atmosphere and is shifted towards the negative phase of the Antarctic Oscillation (AAO) in the troposphere. Differing from the northern hemisphere winter situation, the tropospheric planetary wave activity is weakened. A detailed analysis shows, that the modelled AAO zonal mean signal behaves antisymmetrically between troposphere and strato-mesosphere. This conclusion is supported by reanalysis data and a discussion of planetary wave dynamics in terms of Eliassen-Palm fluxes. Thereby, the tropospheric planetary wave activity appears to be controlled from the middle atmosphere.


2013 ◽  
Vol 13 (4) ◽  
pp. 11395-11425 ◽  
Author(s):  
C. Brühl ◽  
J. Lelieveld ◽  
M. Höpfner ◽  
H. Tost

Abstract. A multiyear study with the atmospheric chemistry general circulation model EMAC with the aerosol module GMXe at high altitude resolution demonstrates that the sulfur gases COS and SO2, the latter from low-latitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. The model consistently uses the same parameters in the troposphere and stratosphere for 7 aerosol modes applied. Lower boundary conditions for COS and other long-lived trace gases are taken from measurement networks, while estimates of volcanic SO2 emissions are based on satellite observations. We show comparisons with satellite data for aerosol extinction (e.g. SAGE) and SO2 in the middle atmosphere (MIPAS on ENVISAT). This corroborates the interannual variability induced by the Quasi-Biennial Oscillation, which is internally generated by the model. The model also realistically simulates the radiative effects of stratospheric and tropospheric aerosol including the effects on the model dynamics. The medium strength volcanic eruptions of 2005 and 2006 exerted a nonnegligible radiative forcing of up to −0.6 W m−2 in the tropics, while the large Pinatubo eruption caused a maximum though short term tropical forcing of about −10 W m−2. The study also shows that observed upper stratospheric SO2 can be simulated accurately only when a sulphur sink on meteoritic dust is included and the photolysis of gaseous H2SO4 in the near infrared is higher than assumed previously.


2015 ◽  
Vol 15 (22) ◽  
pp. 33049-33075 ◽  
Author(s):  
S. Bacer ◽  
T. Christoudias ◽  
A. Pozzer

Abstract. The North Atlantic Oscillation (NAO) plays an important role in the climate variability of the Northern Hemisphere with significant consequences on pollutant transport. We study the influence of the NAO on the atmospheric dispersion of pollutants in the near past and in the future by considering simulations performed by the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model. We analyze two model runs: a simulation with circulation dynamics nudged towards ERA-Interim reanalysis data over a period of 35 years (1979–2013) and a simulation with prescribed Sea Surface Temperature (SST) boundary conditions over 150 years (1950–2099). The model is shown to reproduce the NAO spatial and temporal variability and to be comparable with observations. We find that the decadal variability in the NAO, which has been pronounced since 1950s until 1990, will continue to dominate in the future considering decadal periods, although no significant trends are present in the long term projection (100–150 years horizon). We do not find in the model projections any significant temporal trend of the NAO for the future, meaning that neither positive or negative phases will dominate. Tracers with idealised decay and emissions are considered to investigate the NAO effects on transport; it is shown that during the positive phase of the NAO, the transport from North America towards northern Europe is stronger and pollutants are shifted northwards over the Arctic and southwards over the Mediterranean and North Africa, with two distinct areas of removal and stagnation of pollutants.


2006 ◽  
Vol 6 (4) ◽  
pp. 6957-7050 ◽  
Author(s):  
P. Jöckel ◽  
H. Tost ◽  
A. Pozzer ◽  
C. Brühl ◽  
J. Buchholz ◽  
...  

Abstract. The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model version up to 0.01 hPa was used at T42 resolution (~2.8 latitude and longitude) to simulate the lower and middle atmosphere. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. A Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce the Quasi-Biennial Oscillation and major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated accurately, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of interannual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.


2006 ◽  
Vol 6 (12) ◽  
pp. 5067-5104 ◽  
Author(s):  
P. Jöckel ◽  
H. Tost ◽  
A. Pozzer ◽  
C. Brühl ◽  
J. Buchholz ◽  
...  

Abstract. The new Modular Earth Submodel System (MESSy) describes atmospheric chemistry and meteorological processes in a modular framework, following strict coding standards. It has been coupled to the ECHAM5 general circulation model, which has been slightly modified for this purpose. A 90-layer model setup up to 0.01 hPa was used at spectral T42 resolution to simulate the lower and middle atmosphere. With the high vertical resolution the model simulates the Quasi-Biennial Oscillation. The model meteorology has been tested to check the influence of the changes to ECHAM5 and the radiation interactions with the new representation of atmospheric composition. In the simulations presented here a Newtonian relaxation technique was applied in the tropospheric part of the domain to weakly nudge the model towards the analysed meteorology during the period 1998–2005. This allows an efficient and direct evaluation with satellite and in-situ data. It is shown that the tropospheric wave forcing of the stratosphere in the model suffices to reproduce major stratospheric warming events leading e.g. to the vortex split over Antarctica in 2002. Characteristic features such as dehydration and denitrification caused by the sedimentation of polar stratospheric cloud particles and ozone depletion during winter and spring are simulated well, although ozone loss in the lower polar stratosphere is slightly underestimated. The model realistically simulates stratosphere-troposphere exchange processes as indicated by comparisons with satellite and in situ measurements. The evaluation of tropospheric chemistry presented here focuses on the distributions of ozone, hydroxyl radicals, carbon monoxide and reactive nitrogen compounds. In spite of minor shortcomings, mostly related to the relatively coarse T42 resolution and the neglect of inter-annual changes in biomass burning emissions, the main characteristics of the trace gas distributions are generally reproduced well. The MESSy submodels and the ECHAM5/MESSy1 model output are available through the internet on request.


2019 ◽  
Vol 76 (5) ◽  
pp. 1203-1226 ◽  
Author(s):  
Yoshio Kawatani ◽  
Kevin Hamilton ◽  
Lesley J. Gray ◽  
Scott M. Osprey ◽  
Shingo Watanabe ◽  
...  

Abstract The impact of stratospheric representation is investigated using the Model for Interdisciplinary Research on Climate Atmospheric General Circulation Model (MIROC-AGCM) run with different model-lid heights and stratospheric vertical resolutions, but unchanged horizontal resolutions (~1.125°) and subgrid parameterizations. One-hundred-year integrations of the model were conducted using configurations with 34, 42, 72, and 168 vertical layers and model-lid heights of ~27 km (L34), 47 km (L42), 47 km (L72), and 100 km (L168). Analysis of the results focused on the Northern Hemisphere in winter. Compared with the L42 model, the L34 model produces a poorer simulation of the stratospheric Brewer–Dobson circulation (BDC) in the lower stratosphere, with weaker polar downwelling and accompanying cold-pole and westerly jet biases. The westerly bias extends into the troposphere and even to the surface. The tropospheric westerlies and zone of baroclinic wave activity shift northward; surface pressure has negative (positive) biases in the high (mid-) latitudes, with concomitant precipitation shifts. The L72 and L168 models generate a quasi-biennial oscillation (QBO) while the L34 and 42 models do not. The L168 model includes the mesosphere, and thus resolves the upper branch of the BDC. The L72 model simulates stronger polar downwelling associated with the BDC than does the L42 model. However, experiments with prescribed nudging of the tropical stratospheric winds suggest differences in the QBO representation cannot account for L72 − L42 differences in the climatological polar night jet structure. The results show that the stratospheric vertical resolution and inclusion of the full middle atmosphere significantly affect tropospheric circulations.


2012 ◽  
Vol 12 (9) ◽  
pp. 22629-22685
Author(s):  
F. Khosrawi ◽  
R. Müller ◽  
J. Urban ◽  
M. H. Proffitt ◽  
G. Stiller ◽  
...  

Abstract. A modified form of tracer-tracer correlations of N2O and O3 has been used as a tool for the evaluation of atmospheric photochemical models. Applying this method monthly averages of N2O and O3 are derived for both hemispheres by partitioning the data into altitude (or potential temperature) bins and then averaging over a fixed interval of N2O. In a previous study, the method has been successfully applied to the validation of two Chemical Transport Models (CTMs) and one Chemistry-Climate Model (CCM) using 1-year climatology derived from the Odin Sub Millimetre Radiometer (Odin/SMR). However, the applicability of a 1-year climatology of monthly averages of N2O and O3 has been questioned due to the inability of some CCMs to simulate a specific year for the evaluation of CCMs. In this study, satellite measurements from Odin/SMR, the Aura Microwave Limb Sounder (Aura/MLS), the Michelson Interferometer for Passive Atmospheric Sounding on ENVISAT (ENVISAT/MIPAS), and the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA-1 and CRISTA-2) as well as model simulations from the Whole Atmosphere Community Climate Model (WACCM) are considered. By using seven to eight years of satellite measurements derived between 2003 and 2010 from Odin/SMR, Aura/MLS, ENVISAT/MIPAS and six years of model simulations from WACCM the interannual variability of lower stratospheric monthly averages of N2O and O3 is assessed. It is shown that the interannual variability of the monthly averages of N2O and O3 is low and thus can be easily distinguished from model deficiencies. Further, it is investigated why large differences between Odin/SMR observations and model simulations from the Karlsruhe Simulation Model of the Middle Atmosphere (KASIMA) and the atmospheric general circulation model ECHAM5/Messy1 are found for the Northern and Southern Hemisphere tropics (0° to 30° N and 0° to −30° S, respectively). The differences between model simulations and observations are most likely caused by an underestimation of the quasi-biennial oscillation and tropical upwelling by the models as well as due to biases and/or instrument noise from the satellite instruments. Finally, an inter-comparison between Odin/SMR, Aura/MLS, ENVISAT/MIPAS and WACCM was performed. The comparison shows that these data sets are generally in good agreement but that also some known biases of the data sets are clearly visible in the monthly averages, thus showing that this method is not only a valuable tool for model evaluation but also for satellite inter-comparisons.


2006 ◽  
Vol 6 (4) ◽  
pp. 6801-6823 ◽  
Author(s):  
P. K. Patra ◽  
S. E. Mikaloff Fletcher ◽  
K. Ishijima ◽  
S. Maksyutov ◽  
T. Nakazawa

Abstract. We use a time-dependent inverse (TDI) model to estimate regional sources and sinks of atmospheric CO2 from 64 and then 22 regions based on atmospheric CO2 observations at 87 stations. The air-sea fluxes from the 64-region atmospheric-CO2 inversion are compared with fluxes from an analogous ocean inversion that uses ocean interior observations of dissolved inorganic carbon (DIC) and other tracers and an ocean general circulation model (OGCM). We find that, unlike previous atmospheric inversions, our flux estimates in the southern hemisphere are generally in good agreement with the results from the ocean inversion, which gives us added confidence in our flux estimates. In addition, a forward tracer transport model (TTM) is used to simulate the observed CO2 concentrations using (1) estimates of fossil fuel emissions and a priori estimates of the terrestrial and oceanic fluxes of CO2, and (2) two sets of TDI model corrected fluxes. The TTM simulations of TDI model corrected fluxes show improvements in fitting the observed interannual variability in growth rates and seasonal cycles in atmospheric CO2. Our analysis suggests that the use of interannually varying (IAV) meteorology and a larger observational network have helped to capture the regional representation and interannual variabilities in CO2 fluxes realistically.


Sign in / Sign up

Export Citation Format

Share Document