scholarly journals Optimal Coordination of Directional Overcurrent Relays Using AI Algorithms and Comparison

10.29007/t8d1 ◽  
2018 ◽  
Author(s):  
Gaurav Darji ◽  
Ajay Patel ◽  
Rashesh P. Mehta

For identification of fault in time, with effectiveness and also to isolate the faulted part from the system to keep away from probable outages in a power system, the precise coordination of Directional Overcurrent Relays (DOCRs) is required. The coordination of DOCRs is assessed as optimization problem with containing complex nonlinear constraints. In this paper, several nature inspired AI techniques are implemented for the optimum solution of DOCR coordination problem. Fine tuning of presented AI algorithm is done to get the optimum possible results. Also the obtained results using the proposed methods are hybridized with the nonlinear programming technique for obtaining global best solution. All four algorithms represented for a case study system are compared with each other on the basis of Fitness of solution, convergence time of an algorithm for solution and on the basis of complexities presented by them in the way of solution. The results obtained present that with fine tuning of separate algorithm and using hybridization approach leads to the optimum as well as feasible solution within the boundary limits.

In modern power system, protective relays are playing a vital role for protection of the whole system. The efficiency and reliability of whole protection system depends upon the combined and coordinated operation of protective devices such as relays, circuit breakers etc. Moreover, both types of relays viz., primary and backup relays have been used for smooth and reliable operation of the power system from years. A primary directional over current relay (DOCR) is setup for the fast response of any faulty condition. If it fails, then backup relay perform the same task after some time gap. Three different setting such as plug-setting multiplier (PSM), pickup current settings and time multiplier setting (TMS) are required of performing the operation. In this paper, three very popular swarm based meta-heuristic such as particle swarm optimization (PSO), artificial bee colony (ABC) and a recent hybridization of both, i.e., hybrid ABC-PSO have been implemented for the calculation of optimal coordination problem. This coordination problem is treated for continuous settings optimization for TMS and pickup current. An IEEE 8 bus system without grid has been opted for validation of the results. It is evident from the study that the hybrid ABC-PSO based proves to generate optimal solution providing better convergence rate as compared to individual PSO and ABC algorithm.


2021 ◽  
Vol 11 (19) ◽  
pp. 9207
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

In recent years, distributed generation (DG) has become more common in modern distribution networks (DNs). The presence of these small-scale generation units within a DN brings new challenges to protection engineers, since short-circuit currents tend to increase; additionally, as with microgrids, modern DNs may feature several operational modes depending on their topology and the availability of DG. This paper presents a methodology for the optimal coordination of overcurrent relays (OCRs) in modern DNs with a high presence of DG. Given the fact that protection coordination is a non-linear and non-convex optimization problem, a hybrid harmony search and simulated annealing (HS-SA) approach was implemented for its solution and compared against other techniques, such as conventional HS, genetic algorithm (GA), particle swarm optimization (PSO) and hybrid PSO-HS. Several tests were performed on a DN, considering different operative scenarios as a function of the DG available within the network. A comparison with other works reported in the specialized literature was carried out, evidencing the applicability and effectiveness of the HS-SA technique in solving the optimal OCR coordination problem in modern DNs.


In this paper,the study of optimal coordination of directional overcurrent relays along with relay communication in HV substations is proposed. The relay coordination problem is non linear.It typically consist of two groups of control variables(Time Dial Settings:TDS and Plug Settings:PS). The purpose of relay coordination is to propose the suitable settings for all releases and ensure the coordination. The differential evolution is employed to solve for solutions of optimal relay coordination. The relay coordination is mainly done to improve selectivity of the relay to particular fault. ETAP is so popular for its capability for modelling of power system networks and analyzing various studies and Real Time simulations.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2439 ◽  
Author(s):  
Vipul N. Rajput ◽  
Kartik S. Pandya ◽  
Junhee Hong ◽  
Zong Woo Geem

This paper introduces a new protection system for solar photovoltaic generator (SPVG)-connected networks. The system is a combination of voltage-restrained overcurrent relays (VROCRs) and directional overcurrent relays (DOCRs). The DOCRs are implemented to sense high fault current on the grid side, and VROCRs are deployed to sense low fault current supplied by the SPVG. Furthermore, a novel challenge for the optimal coordination of DOCRs-DOCRs and DOCRs-VROCRs is formulated. Due to the inclusion of additional constraints of VROCR, the relay coordination problem becomes more complicated. To solve this complex problem, a hybrid Harmony Search Algorithm-Bollinger Bands (HSA-BB) method is proposed. Also, the lower and upper bands in BB are dynamically adjusted with the generation number to assist the HSA in the exploration and exploitation stages. The proposed method is implemented on three different SPVG-connected networks. To exhibit the effectiveness of the proposed method, the obtained results are compared with the genetic algorithm (GA), particle swarm optimization (PSO), cuckoo search algorithm (CSA), HSA and hybrid GA-nonlinear programming (GA-NLP) method. Also, the superiority of the proposed method is evaluated using descriptive and nonparametric statistical tests.


Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13
Author(s):  
Abdul Wadood ◽  
Saeid Gholami Farkoush ◽  
Tahir Khurshaid ◽  
Jiang-Tao Yu ◽  
Chang-Hwan Kim ◽  
...  

To ensure a safe and trustworthy pattern in contradiction to the possible faults, a precise, reliable, and fast relaying strategy is of high importance in an electrical power system. These challenges give the impression of being more refined in multi-loop distribution systems. More recently, overcurrent relays (OCRs) have evolved as proficient counteragents for such cases. In this way, inaugurating an optimal protection coordination strategy is accepted as the primary precondition in guaranteeing the safe protection of the coordination strategy. This study is aimed at lessening the overall operational time of the main relays in order to reduce the power outages. The coordination problem is conducted by adjusting only one parameter, namely the time multiplier setting (TMS). In electrical power relaying coordination, the objective function to be minimized is the sum of the overall operational time of the main relays. In the prescribed work, the coordination of the OCRs in the single- and multi-loop distribution network is realized as an optimization issue. The optimization is accomplished by means of JAYA algorithm. The suggested technique depends on the idea that the result acquired for a certain issue ought to pass near the finest result and avert the worst result. This technique involves only the common control factors and does not involve specific control factors. JAYA is adopted to OCR problem and run 20 times with the same initial condition for each case study, and it has been realized that for every run, the JAYA algorithm converges to the global optimum values requiring less number of iterations and computational time. The results obtained from JAYA algorithm are compared with other evolutionary and up-to-date algorithms, and it was determined that JAYA outperforms the other techniques.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Zhe Yang ◽  
Dejan Gjorgjevikj ◽  
Jianyu Long ◽  
Yanyang Zi ◽  
Shaohui Zhang ◽  
...  

AbstractSupervised fault diagnosis typically assumes that all the types of machinery failures are known. However, in practice unknown types of defect, i.e., novelties, may occur, whose detection is a challenging task. In this paper, a novel fault diagnostic method is developed for both diagnostics and detection of novelties. To this end, a sparse autoencoder-based multi-head Deep Neural Network (DNN) is presented to jointly learn a shared encoding representation for both unsupervised reconstruction and supervised classification of the monitoring data. The detection of novelties is based on the reconstruction error. Moreover, the computational burden is reduced by directly training the multi-head DNN with rectified linear unit activation function, instead of performing the pre-training and fine-tuning phases required for classical DNNs. The addressed method is applied to a benchmark bearing case study and to experimental data acquired from a delta 3D printer. The results show that its performance is satisfactory both in detection of novelties and fault diagnosis, outperforming other state-of-the-art methods. This research proposes a novel fault diagnostics method which can not only diagnose the known type of defect, but also detect unknown types of defects.


2021 ◽  
Vol 13 (2) ◽  
pp. 580
Author(s):  
Voicu-Teodor Muica ◽  
Alexandru Ozunu ◽  
Zoltàn Török

(1) Background: The importance of Zinc in today’s world can hardly be exaggerated—from anticorrosion properties, to its durability, aesthetic, and even medicinal uses—zinc is ever-present in our daily lives ever since its discovery in ancient times. The natural, essential, durable, and recyclable features of zinc make it a prized material with uses in many applications across a wide array of fields. The purpose of this study was to compare two life cycle impact assessments of zinc production by using two different main raw materials: (A) zinc concentrates (sulfide ore) and (B) Waelz oxides (obtained through recycling existing imperial smelting process furnace slags). The Waelz oxide scenario was based on a case study regarding the existing slag deposit located in Copsa Mica town, Sibiu county, Romania. (2) Methods: consequential life cycle impact assessment methods were applied to each built system, with real process data obtained from the case study enterprise. (3) Results: Overall, the use of slags in the Waelz kiln to produce zinc oxides for use in the production of zinc metal is beneficial to the environment in some areas (acidification, water, and terrestrial eutrophication), whereas in other areas it has a slightly larger impact (climate change, photochemical ozone formation, and ozone depletion). (4) Conclusions: The use of slags (considered a waste) is encouraged to produce zinc metal, where available. The results are not absolute, suggesting the further need for fine-tuning the input data and other process parameters.


Sign in / Sign up

Export Citation Format

Share Document