scholarly journals Implementation of Hybrid ABC-PSO Algorithm for Directional Overcurrent Relays Coordination Problem

In modern power system, protective relays are playing a vital role for protection of the whole system. The efficiency and reliability of whole protection system depends upon the combined and coordinated operation of protective devices such as relays, circuit breakers etc. Moreover, both types of relays viz., primary and backup relays have been used for smooth and reliable operation of the power system from years. A primary directional over current relay (DOCR) is setup for the fast response of any faulty condition. If it fails, then backup relay perform the same task after some time gap. Three different setting such as plug-setting multiplier (PSM), pickup current settings and time multiplier setting (TMS) are required of performing the operation. In this paper, three very popular swarm based meta-heuristic such as particle swarm optimization (PSO), artificial bee colony (ABC) and a recent hybridization of both, i.e., hybrid ABC-PSO have been implemented for the calculation of optimal coordination problem. This coordination problem is treated for continuous settings optimization for TMS and pickup current. An IEEE 8 bus system without grid has been opted for validation of the results. It is evident from the study that the hybrid ABC-PSO based proves to generate optimal solution providing better convergence rate as compared to individual PSO and ABC algorithm.

In this paper,the study of optimal coordination of directional overcurrent relays along with relay communication in HV substations is proposed. The relay coordination problem is non linear.It typically consist of two groups of control variables(Time Dial Settings:TDS and Plug Settings:PS). The purpose of relay coordination is to propose the suitable settings for all releases and ensure the coordination. The differential evolution is employed to solve for solutions of optimal relay coordination. The relay coordination is mainly done to improve selectivity of the relay to particular fault. ETAP is so popular for its capability for modelling of power system networks and analyzing various studies and Real Time simulations.


Author(s):  
Farhad Namdari ◽  
Sajad Samadinasab

<p>The most of the new protective schemes are based on a communication channel, which cannot be guaranteed in practice. However, during blackouts or cascading failures in the power grid, as system conditions change significantly and rapidly, more information exchanges may be required by the control centers and substations. In other words, the communication channels are operating with high load and therefore become more vulnerable when the power grid is in contingent conditions. Thus, relying on the communication channel for decision making may not be the optimal solution for protective relays, although it might be beneficial to have information exchange. In this article, a novel protective logic is proposed based on phasor measurement units (PMUs) data for optimal coordination of overcurrent relays. PMUs measure the positive sequence voltage at two substations separated by hundreds of miles which are synchronized precisely with the aid of a GPS satellite system. The precise time-tags are attached with samples, and this information is exchanged over communication channels and collected by control centers and/or substations. By extracting the relevant information from these measurements, phasor information can be obtained at any node where PMUs are installed in the power grid. This can be used to do more accurate state estimation, control, and protection. In these relays, besides current and voltage, phasor information has become an important measurement in decision making. The proposed method is tested on IEEE 8-bus standard network.</p>


2013 ◽  
Vol 483 ◽  
pp. 630-634
Author(s):  
Shu Chuan Gan ◽  
Ling Tang ◽  
Li Cao ◽  
Ying Gao Yue

An algorithm of artificial colony algorithm to optimize the BP neural network algorithm was presented and used to analyze the harmonics of power system. The artificial bee colony algorithm global searching ability, convergence speed for the BP neural network algorithm for harmonic analysis is easy to fall into local optimal solution of the disadvantages, and the initial weights of the artificial bee colony algorithm also greatly enhance whole algorithm model generalization capability. This algorithm using MATLAB for Artificial bee colony algorithm and BP neural network algorithm simulation training toolbox found using artificial bee colony algorithm to optimize BP neural network algorithm converges faster results with greater accuracy, with better harmonic analysis results.


Author(s):  
Lazhar Bougouffa ◽  
Abdelaziz Chaghi

<p>Protective relays coordination is the process of determining the exact relay settings such that the relay closes to the fault would operates faster than other relays. The operating time of each relay depends on two independent variables called Pickup current (Ip) and Time Dial Setting (TDS). In this paper, a PSO algorithm has been presented to determine the coordination of Directional Over-Current Relays (DOCRs) in presence of multi-system FACTS devises. From the simulation result and analysis, the impact of TCSC location in the in 33-bus distribution system on Directional Over-Current Relays has been observed on the optimal relays settings as well as the effectiveness of the proposed algorithm in finding optimal coordination of directional over-current relays.</p>


2015 ◽  
Vol 16 (3) ◽  
pp. 389
Author(s):  
Farhad Namdari ◽  
Sajad Samadinasab ◽  
Nader Shojaei ◽  
Mohammad Bakhshipour

The duty of protective systems is the timely detection of fault and removing it from the power network. The accuracy of the results and reducing the execution time of the optimizing algorithm are two crucial elements in selecting optimizing algorithms in protective functions. The most important protective elements that are used in power networks are distance and overcurrent relays. In this article, a new algorithm is presented to solve the optimization problem of coordination of overcurrent and distance relays by using Cuckoo Optimization Algorithm which considers the non-linear model overcurrent relays at all stages of setting. The proposed method is tested on a standard 8-bus power system network. Also the results obtained have been compared with other evolutionary algorithms. The results show that the proposed approach can be provide more effective and practical solutions to minimize the time function of the relays and achieving optimal coordination in comparison with previous studies on optimal coordination of overcurrent and distance relays in power system networks.


10.29007/t8d1 ◽  
2018 ◽  
Author(s):  
Gaurav Darji ◽  
Ajay Patel ◽  
Rashesh P. Mehta

For identification of fault in time, with effectiveness and also to isolate the faulted part from the system to keep away from probable outages in a power system, the precise coordination of Directional Overcurrent Relays (DOCRs) is required. The coordination of DOCRs is assessed as optimization problem with containing complex nonlinear constraints. In this paper, several nature inspired AI techniques are implemented for the optimum solution of DOCR coordination problem. Fine tuning of presented AI algorithm is done to get the optimum possible results. Also the obtained results using the proposed methods are hybridized with the nonlinear programming technique for obtaining global best solution. All four algorithms represented for a case study system are compared with each other on the basis of Fitness of solution, convergence time of an algorithm for solution and on the basis of complexities presented by them in the way of solution. The results obtained present that with fine tuning of separate algorithm and using hybridization approach leads to the optimum as well as feasible solution within the boundary limits.


2021 ◽  
Vol 11 (19) ◽  
pp. 9207
Author(s):  
Sergio D. Saldarriaga-Zuluaga ◽  
Jesús M. López-Lezama ◽  
Nicolás Muñoz-Galeano

In recent years, distributed generation (DG) has become more common in modern distribution networks (DNs). The presence of these small-scale generation units within a DN brings new challenges to protection engineers, since short-circuit currents tend to increase; additionally, as with microgrids, modern DNs may feature several operational modes depending on their topology and the availability of DG. This paper presents a methodology for the optimal coordination of overcurrent relays (OCRs) in modern DNs with a high presence of DG. Given the fact that protection coordination is a non-linear and non-convex optimization problem, a hybrid harmony search and simulated annealing (HS-SA) approach was implemented for its solution and compared against other techniques, such as conventional HS, genetic algorithm (GA), particle swarm optimization (PSO) and hybrid PSO-HS. Several tests were performed on a DN, considering different operative scenarios as a function of the DG available within the network. A comparison with other works reported in the specialized literature was carried out, evidencing the applicability and effectiveness of the HS-SA technique in solving the optimal OCR coordination problem in modern DNs.


2015 ◽  
Vol 74 (1) ◽  
Author(s):  
R. Mageshvaran ◽  
T. Jayabarathi

Real and reactive power deficiencies due to generation and overload contingencies in a power system may decline the system frequency and the system voltage. During these contingencies cascaded failures may occur which will lead to complete blackout of certain parts of the power system. Under such situations load shedding is considered as an emergency control action that is necessary to prevent a blackout in the power system by relieving overload in some parts of the system. The aim of this paper is to minimize the amount of load shed during generation and overload contingencies using a new meta-heuristic optimization algorithm known as artificial bee colony algorithm (ABC). The optimal solution for the problem of steady state load shedding is done by taking squares of the difference between the connected and supplied real and reactive power. The supplied active and reactive powers are treated as dependent variables modeled as functions of bus voltages only. The proposed algorithm is tested on IEEE 14, 30, 57, and 118 bus test systems. The applicability of the proposed method is demonstrated by comparison with the other conventional methods reported earlier in terms of solution quality and convergence properties. The comparison shows that the proposed algorithm gives better solutions and can be recommended as one of the optimization algorithms that can be used for optimal load shedding.


2021 ◽  
Vol 65 (1) ◽  
pp. 53-61
Author(s):  
Reza Taghipour Gorji ◽  
Seyyed Mehdi Hosseini ◽  
Ali Akbar Abdoos ◽  
Ali Ebadi

The Current Transformers (CT) saturation may cause the protective relays mal-operation either non-recognition of internal fault or undesirable trip under external fault conditions. Therefore, compensation of CT saturation is very important for correct performance of protective schemes. Compensation of CT saturation by combination of signal processing methods and intelligent algorithms is a suitable solution to solve the problem. It decreases the probability of mal-operation and increases the reliability of the power system. In this paper, Support Vector Regression (SVR) method is employed to compensate the distorted secondary current due to CT saturation. In SVR method, despite the other methods such as MLPand ANFIS, instead of minimizing the model error, the operational risk error is considered as target function. In this method, by using Kernel tricks, a smart RBF neural network is obtained, so that all operational procedures will be optimized automatically. In this paper, an intelligent method based on Particle Swarm Optimization (PSO) algorithm is presented to determine the optimal values of SVR parameters. Due to the stability and robustness of this method in presence of noise and sudden changes in current, this method has a high accuracy. In addition, a sample power system is simulated using PSCAD software. Afterwards, current signals are extracted and fed to PSO-SVR algorithm, which is implemented in MATLAB environment. The obtained results show the preference of the proposed method in aspect of estimation accuracy as compared to some presented methods in the field of CT saturation detection and correction.


2021 ◽  
Vol 12 (1) ◽  
pp. 27
Author(s):  
Hassan Shokouhandeh ◽  
Sohaib Latif ◽  
Sadaf Irshad ◽  
Mehrdad Ahmadi Kamarposhti ◽  
Ilhami Colak ◽  
...  

Reactive power compensation is one of the practical tools that can be used to improve power systems and reduce costs. These benefits are achieved when the compensators are installed in a suitable place with optimal capacity. This study solves the issues of optimal supply and the purchase of reactive power in the IEEE 30-bus power system, especially when considering voltage stability and reducing total generation and operational costs, including generation costs, reserves, and the installation of reactive power control devices. The modified version of the artificial bee colony (MABC) algorithm is proposed to solve optimization problems and its results are compared with the artificial bee colony (ABC) algorithm, the particle swarm optimization (PSO) algorithm and the genetic algorithm (GA). The simulation results showed that the minimum losses in the power system requires further costs for reactive power compensation. Also, optimization results proved that the proposed MABC algorithm has a lower active power loss, reactive power costs, a better voltage profile and greater stability than the other three algorithms.


Sign in / Sign up

Export Citation Format

Share Document