scholarly journals Effectiveness of Selected Entomopathogenic Fungi in Packed Rice Grain at Room Temperature Against Corcyra Cephalonica Stainton

2017 ◽  
Vol 23 (3) ◽  
pp. 183 ◽  
Author(s):  
Hendrawan Samodra ◽  
Yusof Bin Ibrahim

Eight isolates of entomopathogenic fungi were evaluated as dried conidia against the rice moth,  Corcyra cephalonica. In bioassays two isolates of Beauveria bassiana (BbGc and BbPs) and one isolate of Metarhizium anisopliae (MaPs) consistently gave high mortality to C. cephalonica larvae. Formulations in either kaolin, talc or tapioca flour (20 % w/w a.i.) thoroughly mixed with long grain rice in plastic cups (8 cm diameter by 5 cm) gave complete larval mortality by the 12th day of treatment. However, in general those formulated in kaolin and talc were more efficacious and faster to kill compared to those formulated in tapioca flour or the unformulated control. Even at the lowest rate of 0.05 g BbGc in kaolin provided 100% mortality 7 days after introduction compared with other dust formulations. Isolate BbGc in kaolin and talc administered at 0.4 g a.i. in 200 g rice packed in plastic kept at room temperature provided protection against the rice moth up to 4 months of storage. Larval mortality in excess of 90% was obtained 15 days after introduction. Formulations of MaPs was effective only within the first month of storage beyond which infectivity rapidly declined.

2013 ◽  
Vol 13 (1) ◽  
pp. 52-60
Author(s):  
Haperidah Nunilahwati ◽  
Siti Herlinda ◽  
Chandra Irsan ◽  
Yulia Pujiastuti ◽  
Khodijah Khodijah ◽  
...  

Efficacy test of liquid bio-insecticide of entomopathogenic fungi in control against Plutella xylostella in the laboratory.  The insect pest P. xylostella could reduce crop production of Brassicaceae. The aim of research was to test the efficacy liquid bio insecticide with active ingredient of Beauveria bassiana and Metarhizium anisopliae fungi to control P. xylostella. Bio-insecticide was applied by spraying  on mustard leaves infested with 50 individuals of third instar larvae of P. xylostella and a density of 1x106 conidia ml-1. Larval mortality was observed every 2 hours and LT50 of larvae was calculated. The study showed that the highest percentage of mortality found in Mt ES and Mt ES (cf) isolates was 99.6%, the lowest mortality at Mt NES isolate was 96.80%. LT50 and LT95 values   Bb ES were the lowest i.e. 2.04 days and 2.95 days. The highest LT50 and LT95 of Mt NES isolate were 2.24 days and 3.32 days. The liquid bio-insecticide of entomopathogenic fungus B. bassiana and M. anisopliae were effective to control the larvae of P. xylostella.


2017 ◽  
Vol 15 (4) ◽  
pp. 31-39
Author(s):  
Elżbieta Popowska-Nowak ◽  
Dorota Tumialis ◽  
Elżbieta Pezowicz

The lesser mealworm Alphitobius diaperinus is present in great numbers in poultry houses. These insects are especially dangerous as a potential carriers of pathogens such as bacteria, viruses and parasites. We explored the possibility of using local strains of entomopathogenic fungi isolated from litter and from soil to control lesser mealworm populations. Isolated fungi showed low pathogenicity to lesser mealworm beetles. Infection with a suspension at a concentration of 1 × 108 spores/ml resulted in only 4 Metarhizium anisopliae sensu lato isolates showing the highest insect mortality in the range of 30–36%. Still lower pathogenicity was found in isolates of Beauveria bassiana, with only 4 isolates of B. bassiana causing a mortality of 17–26%. Isolates of Isaria fumosorosea and I. farinosa did not cause mortality in beetles that differed significantly from that in the control variant. The larvae were more susceptible to infection. Except for I. fumosorosea, all species caused 100% mortality in larvae. For further studies, the B. bassiana 3K isolate (from the litter) could be selected because of its high mortality (100%) and high larval infectivity (50% overgrown with mycelium).


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Muhammad Shehzad ◽  
Muhammad Tariq ◽  
Tariq Mukhtar ◽  
Asim Gulzar

Abstract Background The diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a noxious pest of cruciferous crops all over the world causing serious economic damage. Management of insect pest generally depends on chemical control; however, due to development of resistance against all types of insecticides, alternative approaches especially utilization of a microbial agent is inevitable. Results Potential of 2 entomopathogenic fungi (EPF), viz., Beauveria bassiana and Metarhizium anisopliae, was evaluated against 2nd and 3rd larval instars of P. xylostella by adopting leaf dip and direct spraying methods under laboratory conditions. Significant mortality rate was achieved by each fungus under adopted methodologies. However, B. bassiana was found to be more effective in both conditions than M. anisopliae. Highest mean corrected mortality (77.80%) was recorded, when spores of B. bassiana were sprayed on the 2nd instar larvae (LC50=1.78×104/ml) after the 6th day of treatment. Similarly, incase of M. anisopliae LC50 for the 2nd instar at the same methodology was 2.78×104/ml with a mortality percentage of 70.0%. Offspring sex ratio was non-significantly related to treatment concentration and methodology, except for the control. Conclusion Beauveria bassiana and M. anisopliae had potential to suppress P. xylostella infestations when applied appropriately. Present findings suggested that B. bassiana and M. anisopliae when sprayed on immatures of host insect had more effect as compared to leaf dip procedure. Furthermore, no significant effect of concentrations was observed on sex ratio.


2015 ◽  
Vol 47 (3) ◽  
pp. 117 ◽  
Author(s):  
M.W. Khudhair ◽  
M.Z. Khalaf ◽  
H.F. Alrubeai ◽  
A.K. Shbar ◽  
B.S. Hamad ◽  
...  

Virulence of entomopathogenic fungi <em>Metarhizium anisopliae</em> and <em>Beauveria bassiana</em> were tested against Arabian Rhinoceros Beetle, <em>Oryctes agamemnon arabicus</em> larvae. Four concentrations (1×10<sup>5</sup>, 1×10<sup>7</sup>, 1×10<sup>9</sup> and 1×10<sup>11</sup> conidia/mL<sup>–1</sup>) of two locally isolated entomopathogenic fungi spore suspensions were used in this study via larval direct spraying. Results revealed that both isolates can cause high mortality rate reaching 100% after 29 days. However, <em>Beauveria bassiana</em> scored higher mortality rate in short time especially at the concentration of 1×10<sup>11</sup> conidia/ mL<sup>–1</sup> with lethal time (LT)<sub>50</sub> 12.75 and LT<sub>90</sub> 20.00; while, <em>Metarhizium anisopliae</em> caused the higher percentage of malformed adults. Moreover, both isolates affected insect’s life cycle particularly in the pupal stage which was reduced remarkably by almost 50% in comparison with the control treatment.


2001 ◽  
Vol 44 (4) ◽  
pp. 419-423 ◽  
Author(s):  
Edson Hirose ◽  
Pedro M. O. J. Neves ◽  
João A. C. Zequi ◽  
Luís H. Martins ◽  
Cristiane H. Peralta ◽  
...  

The in vitro fungitoxic effect of three biofertilizers, E.M.-4, Multibion <FONT FACE=Symbol>Ô</FONT> and Supermagro used in organic agriculture and the neem oil (Azadirachta indica A. Juss) on the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana was studied. These products were mixed in a medium where the two fungi were inoculated, and germination, vegetative growth and conidiogenesis were assessed. The biofertilizers Supermagro and E.M.- 4 showed to be less toxic for the two fungi whereas Multibion<FONT FACE=Symbol>Ô</FONT> caused major inhibition on M. anisopliae, with reductions in germination (-37.74%), colony diameter (-30.26%) and conidiogenesis (-42.62%). Neem oil promoted a larger negative effect on B. bassiana, inhibiting germination (-45.27%), colony diameter (-36.62%) and conidiogenesis (-84.93%).


2014 ◽  
Vol 77 (1) ◽  
pp. 87-93 ◽  
Author(s):  
NICKOLAS G. KAVALLIERATOS ◽  
CHRISTOS G. ATHANASSIOU ◽  
MARIA M. AOUNTALA ◽  
DEMETRIUS C. KONTODIMAS

The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae, and Isaria fumosorosea were tested against the stored-grain pest Sitophilus oryzae. The fungi were isolated from the soil (from three locations in Attica, Greece: B. bassiana from Tatoion, M. anisopliae from Marathon, and I. fumosorosea from Aghios Stefanos) using larvae of Galleria mellonella as bait. Suspensions of 2.11 × 107 and 2.11 × 108, 1.77 × 107 and 1.77 × 108, and 1.81 × 107 and 1.81 × 108 conidia per ml of B. bassiana, M. anisopliae, and I. fumosorosea, respectively, were applied by three treatments: (i) sprayed on food and set in petri dishes with adults of S. oryzae, (ii) sprayed on adults of S. oryzae and set in petri dishes without food, and (iii) sprayed on adults of S. oryzae and set in petri dishes with food. The observed mortality of S. oryzae adults during the overall exposure period for the lowest, as well as for the highest, concentrations of B. bassiana, M. anisopliae, and I. fumosorosea ranged from 0 to 100%. Concentration was, in most of the cases tested, a critical parameter that determined the “speed of kill” of the exposed insect species for B. bassiana and M. anisopliae. Conversely, concentration was not that critical for I. fumosorosea, and survival was high in some of the combinations tested, even after 14 days of exposure. Both in the highest and the lowest concentrations of fungi, the mortality of S. oryzae adults was higher when the fungi were applied on adults than when they were applied on food. Higher mortality was observed when food was absent than when food was present, in most of the cases tested. The high efficacy levels recorded in the current study indicate that the tested fungi could be effective biocontrol agents against S. oryzae.


Sign in / Sign up

Export Citation Format

Share Document