scholarly journals EFFECT OF INJECTOR OPENING PRESSURE ON PERFORMANCE AND EMISSION OF LPG - METHYL ESTER OF MAHUA OIL DUAL FUEL ENGINE

2017 ◽  
Vol 25 (2) ◽  
pp. 373-381
Author(s):  
N. Kapilan

One of variables, which affect the performance and emission of dual fuel engine is injection pressure. Hence in the present work, effect of Injector opening pressure on the performance of the engine was studied.  A four stroke single cylinder engine was modified to work in dual fuel mode. Three injector opening pressures (180 bar, 200 bar and 220 bar) were considered for the present work. Methyl ester of mahua oil was used as pilot fuel and LPG was used as primary fuel.    From the test results, it was observed that the injector opening pressure of 200 bar results in higher brake thermal efficiency. The higher injector opening pressure results in better atomization and peneatration of methyl ester of mahua oil. The exhaust emissions such as Smoke, unburnt hydro carbon and carbon monoxide of 200 bar is lower than other pressures.       

2008 ◽  
Vol 12 (1) ◽  
pp. 115-123 ◽  
Author(s):  
Kapilan Nadar ◽  
Rana Reddy

For the present work, a single cylinder diesel engine was modified to work in dual fuel mode. To study the feasibility of using methyl ester of mahua oil as pilot fuel, it was used as pilot fuel and liquefied petroleum gas was used as primary fuel. In dual fuel mode, pilot fuel quantity and injector opening pressure are the few variables, which affect the performance and emission of dual fuel engine. Hence, in the present work, pilot fuel quantity and injector opening pressure were varied. From the test results, it was observed that the pilot fuel quantity of 5 mg per cycle and injector opening pressure of 200 bar results in higher brake thermal efficiency. Also the exhaust emissions such as smoke, unburnt hydrocarbon and carbon monoxide are lower than other pressures and pilot fuel quantities. The higher injection pressure and proper pilot fuel quantity might have resulted in better atomization, penetration of methyl ester of mahua oil and better combustion of fuel.


2008 ◽  
Vol 12 (1) ◽  
pp. 151-156 ◽  
Author(s):  
Kapilan Nadar ◽  
Pratap Reddy ◽  
Rao Anjuri

In this work, an experimental work was carried out to compare the performance of biodiesels made from non edible mahua oil and edible gingili oil in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas was used as primary fuel. Biodiesel was prepared by transesterification process and mahua oil methyl ester (MOME) and gingili oil methyl ester (GOME) were used as pilot fuels. The viscosity of MOME is slightly higher than GOME. The dual fuel engine runs smoothly with MOME and GOME. The test results show that the performance of the MOME is close to GOME, at the pilot fuel quantity of 0.45 kg/h and at the advanced injection timing of 30 deg bTDC. Also it is observed that the smoke, carbon monoxide and unburnt hydro carbon emissions of GOME lower than the MOME. But the GOME results in slightly higher NOx emissions. From the experimental results it is concluded that the biodiesel made from mahua oil can be used as a substitute for diesel in dual fuel engine.


Author(s):  
Mohamed Y. E. Selim ◽  
M. S. Radwan ◽  
H. E. Saleh

The use of Jojoba Methyl Ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or LPG at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or liquefied petroleum gas (LPG) as the main fuel and Jojoba Methyl Ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic data of 100 engine cycle in terms of maximum pressure and its pressure rise rate. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the Jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.


2020 ◽  
Vol 197 ◽  
pp. 06010
Author(s):  
Antonio Caricato ◽  
Antonio Paolo Carlucci ◽  
Antonio Ficarella ◽  
Luciano Strafella

In this paper, the effect of late injection on combustion and emission levels has been investigated on a single cylinder compression ignition engine operated in dual-fuel mode injecting methane along the intake duct and igniting it through a pilot fuel injected directly into the combustion chamber. During the tests, the amount of pilot fuel injected per cycle has been kept constant, while the amount of methane has been varied on three levels. Therefore, three levels of engine load have been tested, while speed has been kept constant equal to 1500rpm. Pilot injection pressure has been varied on three set points, namely 500, 1000 and 1500 bar. For each engine load and injection pressure, pilot injection timing has been swept on a very broad range of values, spanning from very advanced to very late values. The analysis of heat release rate indicates that MK-like conditions are established in dual-fuel mode with late pilot injection. In these conditions, pollutant species, and NOx levels in particular, are significantly reduced without penalization – and in several conditions with improvement – on fuel conversion efficiency.


2021 ◽  
Vol 850 (1) ◽  
pp. 012005
Author(s):  
Nikhil Muthu Kumar ◽  
Harsh Bhavsar ◽  
G Sakthivel ◽  
Mohammed Musthafa Feroskhan ◽  
K Karunamurthy

Abstract The introduction of the strict emissions norms is diverting the research for the development of new technologies which leads to the reduction of engine exhaust emissions. The usage of biodiesel in CI engine can enhance air quality index and protects the environment. Biodiesel can do an increment in the life of CI engines because it is clean-burning and a stable fuel when compared to diesel. Moreover, biogas has the potential to decrease both nitrogen oxides and smoke emissions simultaneously. Operating the engine in dual-fuel mode can provide lower emissions and a proper substitute for diesel. In this research, a modified CI Engine with single cylinder is used. Biogas is used as primary fuel and diesel, Mahua oil-diesel blend and Fish oil-diesel blend are used as secondary fuel. The effect of various secondary fuel blends on performance and emission characteristics in dual fuel engine are compared. In light of the performance and emission qualities it is reasoned that, utilization of the dual fuel mode in engine signifies the durability and lessens the harmful emissions from the engine with the exception of hydrocarbon and CO emissions. The excessive viscosity of fish oil and mahua oil prompts inconvenience in siphoning and spray attributes. The incompetent mixing of raw fish oil and raw mahua oil with diesel and biogas including air leads to incomplete combustion.


Sign in / Sign up

Export Citation Format

Share Document