scholarly journals Design of A Hvdc-Based Controller for Load Change Compensation and Stabilization of Inter-Area Oscillations

2017 ◽  
Vol 20 (3&4) ◽  
pp. 187-202
Author(s):  
I. Ngamroo

As an interconnected power system via a High-Voltage Direct Current (HVDC) link is subjected to a rapid load change with the frequency of inter-area oscillation mode, system frequency and tie line power may be severely disturbed and oscillate.  To compensate for the rapid load change and stabilize both frequency and tie line power oscillations due to the inter-area mode, the dynamic power flow control via a HVDC link can be exploited.  To implement this concept, a new design method of HVDC-based controller is proposed.  To grasp a physical characteristic of the inter-area oscillation frequency, the technique of overlapping decompositions is employed to achieve the subsystem embedded with the inter-area mode.  Consequently, the second-order lead/lag controller of HVDC link can be designed in this subsystem.  To acquire the desired overshoot of frequency oscillations, the parameters of the controller are automatically optimized by the Tabu Search (TS) algorithm.  The effectiveness of the designed controller is investigated in a three-area longitudinal interconnected power system which represents the interconnection between the south of Thailand and Malaysia power systems.

Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


2014 ◽  
Vol 536-537 ◽  
pp. 1542-1546
Author(s):  
Xun Gao ◽  
Jie Meng ◽  
Yi Qun Li ◽  
Ying Wang ◽  
Wen Chao Zhang

A phenomenon that the damping ratio will decrease when the power flows from both sides to the primary power grid is summarized and analyzed in the paper. Based on analysis of the damping ratio change of West Inner Mongolia-Shandong oscillation under the sequential operation mode and the hedge operation mode, a three-machine equivalent system is established to study edge to edge (ETE) oscillation mode under hedge operating mode of the power system. The influence of magnitudes and trends of power flow on damping ratio is analyzed, and the reason that why damping ratios decreases when both sides send power to the mid-side power grid is explained.


2018 ◽  
Vol 7 (2.6) ◽  
pp. 130 ◽  
Author(s):  
Hayder O. Alwan ◽  
Noor M. Farhan

Outages and faults cause problems in interconnected power system with huge economic consequences in modern societies. In the power system blackouts, black start resources such as micro combined heat and power (CHP) systems and renewable energies, due to their self-start ability, are one of the solutions to restore power system as quickly as possible. In this paper, we propose a model for power system restoration considering CHP systems and renewable energy sources as being available in blackout states. We define a control variable representing a level of balance between the distance and importance of loads according to the importance and urgency of the affected customer. Dynamic power flow is considered in order to find feasible sequence and combination of loads for load restoration.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 18
Author(s):  
B Vijaya Krishna ◽  
B Venkata Prashanth ◽  
P Sujatha

In current days, the power quality issues in the interconnected power system are mainly happens due to the demand of electricity and utilization of large non-linear loads as well as inductive/capacitive loads. The power quality cries are voltage sag and swell in multi-bus power system (MBPS). In this article studies on a two bus, three bus and five bus power systems using DPFC. In order to eliminate the voltage sag and swell in the MBPS, a distributed power flow controller (DPFC) is designed. The structure of the DPFC consists of three-phase shunt converter and three single series phase converters. Both these converters are arranged in back-back voltage source inverters (VSIs). These converters are controlled with help of the pulse width modulation (PWM) scheme. The feedback controllers and reference signals are derived the PWM for DPFC to magnify the power quality problems in MBPS. The performance of the model is investigated at different loads by making of MATLAB/Simulink model. The simulation results are presented.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1221 ◽  
Author(s):  
Li Sun ◽  
Hongbo Liu ◽  
Chenglian Ma

With the rapid development of ultra-high-voltage (UHV) AC/DC, especially the step-by-step upgrading of the UHV DC transmission scale, security presents new challenges. Commutation failure (CF) is a common fault in line commutated converter (LCC) high-voltage direct current (HVDC) power systems. Once failure happens, it may cause power oscillations in a system. In this paper, taking a two-area AC/DC parallel interconnected power system as the example, based on the impulse response model of second-order linear system, the mechanism of power oscillation on the AC tie-line caused by CF are clarified. It is proved that the peak value of the AC tie-line power oscillation is mainly determined by the DC power and the equivalent CF duration, the frequency and damping ratio of dominant area oscillation mode. Meanwhile, the peak time is mainly determined by the oscillation frequency. Finally, the correctness and effectiveness of the algorithms are verified by a simulation analysis of an extended IEEE-39-bus AC/DC parallel interconnected power system. These research results can provide a basis for the arrangement of the operating modes and the formulation of control measures for interconnected power grids.


2007 ◽  
Vol 17 (2) ◽  
pp. 2365-2368 ◽  
Author(s):  
Sanchai Dechanupaprittha ◽  
Komsan Hongesombut ◽  
Masayuki Watanabe ◽  
Yasunori Mitani ◽  
Issarachai Ngamroo

2013 ◽  
Vol 385-386 ◽  
pp. 1078-1081 ◽  
Author(s):  
Fang Zhang ◽  
Jian Ping Chen ◽  
Chuan Dong Li ◽  
Yan Juan Wu

The main objective of power flow control for unified power flow controller (UPFC) is to increase the transmission capacity over the existing transmission corridor or line. This paper presents a practical engineering methodology of embedding the power flow control model of UPFC into the commercial software -- power system analysis software package (PSASP) based on its user program interface (UPI) function. In the proposed methodology, the interface currents of UPFC series side and UPFC shunt side between the UPFC device and the network are used to control the transmission line power flow and UPFC bus voltage, respectively. In UPFC series side, the current of UPFC series branch is calculated from the power target equation of the controlled line. In UPFC shunt side, the shunt reactive current of UPFC is used to control the bus voltage. Simulation results on a practical power system show that the proposed methodology can be efficiently applied to the engineering research and analysis of the real power grid with UPFC with good convergence and only one control parameter needed to be prescribed.


Sign in / Sign up

Export Citation Format

Share Document