scholarly journals AC Tie-Line Power Oscillation Mechanism and Peak Value Calculation for a Two-Area AC/DC Parallel Interconnected Power System Caused by LCC-HVDC Commutation Failures

Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1221 ◽  
Author(s):  
Li Sun ◽  
Hongbo Liu ◽  
Chenglian Ma

With the rapid development of ultra-high-voltage (UHV) AC/DC, especially the step-by-step upgrading of the UHV DC transmission scale, security presents new challenges. Commutation failure (CF) is a common fault in line commutated converter (LCC) high-voltage direct current (HVDC) power systems. Once failure happens, it may cause power oscillations in a system. In this paper, taking a two-area AC/DC parallel interconnected power system as the example, based on the impulse response model of second-order linear system, the mechanism of power oscillation on the AC tie-line caused by CF are clarified. It is proved that the peak value of the AC tie-line power oscillation is mainly determined by the DC power and the equivalent CF duration, the frequency and damping ratio of dominant area oscillation mode. Meanwhile, the peak time is mainly determined by the oscillation frequency. Finally, the correctness and effectiveness of the algorithms are verified by a simulation analysis of an extended IEEE-39-bus AC/DC parallel interconnected power system. These research results can provide a basis for the arrangement of the operating modes and the formulation of control measures for interconnected power grids.

2014 ◽  
Vol 536-537 ◽  
pp. 1542-1546
Author(s):  
Xun Gao ◽  
Jie Meng ◽  
Yi Qun Li ◽  
Ying Wang ◽  
Wen Chao Zhang

A phenomenon that the damping ratio will decrease when the power flows from both sides to the primary power grid is summarized and analyzed in the paper. Based on analysis of the damping ratio change of West Inner Mongolia-Shandong oscillation under the sequential operation mode and the hedge operation mode, a three-machine equivalent system is established to study edge to edge (ETE) oscillation mode under hedge operating mode of the power system. The influence of magnitudes and trends of power flow on damping ratio is analyzed, and the reason that why damping ratios decreases when both sides send power to the mid-side power grid is explained.


2017 ◽  
Vol 20 (3&4) ◽  
pp. 187-202
Author(s):  
I. Ngamroo

As an interconnected power system via a High-Voltage Direct Current (HVDC) link is subjected to a rapid load change with the frequency of inter-area oscillation mode, system frequency and tie line power may be severely disturbed and oscillate.  To compensate for the rapid load change and stabilize both frequency and tie line power oscillations due to the inter-area mode, the dynamic power flow control via a HVDC link can be exploited.  To implement this concept, a new design method of HVDC-based controller is proposed.  To grasp a physical characteristic of the inter-area oscillation frequency, the technique of overlapping decompositions is employed to achieve the subsystem embedded with the inter-area mode.  Consequently, the second-order lead/lag controller of HVDC link can be designed in this subsystem.  To acquire the desired overshoot of frequency oscillations, the parameters of the controller are automatically optimized by the Tabu Search (TS) algorithm.  The effectiveness of the designed controller is investigated in a three-area longitudinal interconnected power system which represents the interconnection between the south of Thailand and Malaysia power systems.


Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


2011 ◽  
Vol 128-129 ◽  
pp. 594-601
Author(s):  
Yang Liu ◽  
Qian Huang ◽  
Dong Chen

With the rapid development of interconnected power grid, the phenomenon of power system low-frequency oscillation appears unavoidably. Then, the appearance of wide-area measurement system provided a supporting technology for better scout low-frequency oscillation system and better recognize the oscillation mode . In this paper, the existing oscillation mode identifying methods are analyzed from the viewpoint of calculation speed, criterion, calculation accuracy, etc. Mainly compared the applicability of two methods, Prony and ESPRIT . Based on the above research, a new idea of monitoring power system low frequency oscillation based on WAMS is put forward in this paper.


Author(s):  
Sayantan Sinha ◽  
Ranjan Kumar Mallick

<p>An attempt has been made to regulate the frequency of an interconnected  modern power system using automatic generation control under a restructured market scenario. The system model considered consists of a thermal generation plant coupled with a gas turbine plant in both areas. The presence of deregulated market scenario in an interconnected power system makes it too vulnerable to small load disturbance giving rise to frequency and tie line power imbalances. An attempt has been made to introduce a novel Tilted Integral derivative controller to minimize the frequency and tie line power deviations and restrict them to scheduled values. A maiden attempt has been made to tune the controller gains with the help of a novel hybrid optimization scheme which includes the amalgamation of the exploitative nature of the Differential evolution technique and the explorative attributes of the Dragonfly Algorithm. This hybrid technique is therefore coined as Differential evolution- dragonfly algorithm (DE-DA) technique. Use of some standard benchmark fucntions are made to prove the efficacy of the proposed scheme in tunig the controller gains. The supremacy of the proposed TID controller is examined under two individual market scenarios and under the effect of a step load disturbance. The robustness of the controller in minimizing frequency deviations in the systems is broadly showcased. The superiority of the controller is also proved by comparing it with pre published results.</p>


2021 ◽  
Vol 13 (21) ◽  
pp. 11776
Author(s):  
Lakhdar Chaib ◽  
Abdelghani Choucha ◽  
Salem Arif ◽  
Hatim G. Zaini ◽  
Attia El-Fergany ◽  
...  

In this present work, a new metaheuristic method called a Harris hawk optimizer (HHO) is applied to achieve the optimal design of a power system stabilizer (PSS) in a multimachine power system. Several well-known chaos maps are incorporated into the HHO to form a chaotic HHO (CHHO) with the aim of improving static operators and enhancing global searching. To assess the CHHO performance, exhaustive comparison studies are made between anticipated chaotic maps in handling unconstrained mathematical problems. At this moment, The PSS design problem over a wide permutation of loading conditions is formulated as a non-linear optimization problem. The adopted objective function defines the damping ratio of lightly damped electromechanical modes subject to a set of constraints. The best PSS parameters are generated by the proposed CHHO. The applicability of the proposed CHHO based on PSS is examined and demonstrated on a 10-generator and 39-bus multimachine power system model. The performance assessments of the CHHO results are realized by a comparative study with HHO through extensive simulations along with further eigenvalue analysis to prove its efficacy. The simulation results convincingly demonstrate the high performance of the proposed CHHO-PSS under various operating scenarios.


Sign in / Sign up

Export Citation Format

Share Document