scholarly journals Load restoration methodology considering renewable energies and combined heat and power systems

2018 ◽  
Vol 7 (2.6) ◽  
pp. 130 ◽  
Author(s):  
Hayder O. Alwan ◽  
Noor M. Farhan

Outages and faults cause problems in interconnected power system with huge economic consequences in modern societies. In the power system blackouts, black start resources such as micro combined heat and power (CHP) systems and renewable energies, due to their self-start ability, are one of the solutions to restore power system as quickly as possible. In this paper, we propose a model for power system restoration considering CHP systems and renewable energy sources as being available in blackout states. We define a control variable representing a level of balance between the distance and importance of loads according to the importance and urgency of the affected customer. Dynamic power flow is considered in order to find feasible sequence and combination of loads for load restoration.

Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 322 ◽  
Author(s):  
Ping He ◽  
Seyed Arefifar ◽  
Congshan Li ◽  
Fushuan Wen ◽  
Yuqi Ji ◽  
...  

The well-developed unified power flow controller (UPFC) has demonstrated its capability in providing voltage support and improving power system stability. The objective of this paper is to demonstrate the capability of the UPFC in mitigating oscillations in a wind farm integrated power system by employing eigenvalue analysis and dynamic time-domain simulation approaches. For this purpose, a power oscillation damping controller (PODC) of the UPFC is designed for damping oscillations caused by disturbances in a given interconnected power system, including the change in tie-line power, the changes of wind power outputs, and others. Simulations are carried out for two sample power systems, i.e., a four-machine system and an eight-machine system, for demonstration. Numerous eigenvalue analysis and dynamic time-domain simulation results confirm that the UPFC equipped with the designed PODC can effectively suppress oscillations of power systems under various disturbance scenarios.


Load frequency control (LFC) in interconnected power system of small distribution generation (DG) for reliability in distribution system. The main objective is to performance evaluation load frequency control of hybrid for interconnected two-area power systems. The simulation consist of solar farm 10 MW and gasifier plant 300 kW two-area in tie line. This impact LFC can be address as a problem on how to effectively utilize the total tie-line power flow at small DG. To performance evaluation and improve that defect of LFC, the power flow of two-areas LFC system have been carefully studied, such that, the power flow and power stability is partially LFC of small DG of hybrid for interconnected two-areas power systems. Namely, the controller and structural properties of the multi-areas LFC system are similar to the properties of hybrid for interconnected two-area LFC system. Inspired by the above properties, the controller that is propose to design some proportional-integral-derivative (PID) control laws for the two-areas LFC system successfully works out the aforementioned problem. The power system of renewable of solar farm and gasifier plant in interconnected distribution power system of area in tie – line have simulation parameter by PID controller. Simulation results showed that 3 types of the controller have deviation frequency about 0.025 Hz when tie-line load changed 1 MW and large disturbance respectively. From interconnected power system the steady state time respond is 5.2 seconds for non-controller system, 4.3 seconds for automatic voltage regulator (AVR) and 1.4 seconds for under controlled system at 0.01 per unit (p.u.) with PID controller. Therefore, the PID control has the better efficiency non-controller 28 % and AVR 15 %. The result of simulation in research to be interconnected distribution power system substation of area in tie - line control for little generate storage for grid connected at better efficiency and optimization of renewable for hybrid. It can be conclude that this study can use for applying to the distribution power system to increase efficiency and power system stability of area in tie – line.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 18
Author(s):  
B Vijaya Krishna ◽  
B Venkata Prashanth ◽  
P Sujatha

In current days, the power quality issues in the interconnected power system are mainly happens due to the demand of electricity and utilization of large non-linear loads as well as inductive/capacitive loads. The power quality cries are voltage sag and swell in multi-bus power system (MBPS). In this article studies on a two bus, three bus and five bus power systems using DPFC. In order to eliminate the voltage sag and swell in the MBPS, a distributed power flow controller (DPFC) is designed. The structure of the DPFC consists of three-phase shunt converter and three single series phase converters. Both these converters are arranged in back-back voltage source inverters (VSIs). These converters are controlled with help of the pulse width modulation (PWM) scheme. The feedback controllers and reference signals are derived the PWM for DPFC to magnify the power quality problems in MBPS. The performance of the model is investigated at different loads by making of MATLAB/Simulink model. The simulation results are presented.


2020 ◽  
Vol 152 ◽  
pp. 03008
Author(s):  
Heung-Jae Lee ◽  
Jung-Hyun Oh

This paper propose an intelligent restoration aid system that assists the decision of power system operators for reliable and fast restoration processes when a blackout happened in massive power systems. This system consists of a topology processor and intelligent restoration aid system. The topology processor identifies the real-time embedded topology structure between power system facilities and determines the power outage section. The power system restoration aid system determines the feasible restoration path in terms of overloads and real power flow. Case studies demonstrate a promising possibility of practical application.


2017 ◽  
Vol 20 (3&4) ◽  
pp. 187-202
Author(s):  
I. Ngamroo

As an interconnected power system via a High-Voltage Direct Current (HVDC) link is subjected to a rapid load change with the frequency of inter-area oscillation mode, system frequency and tie line power may be severely disturbed and oscillate.  To compensate for the rapid load change and stabilize both frequency and tie line power oscillations due to the inter-area mode, the dynamic power flow control via a HVDC link can be exploited.  To implement this concept, a new design method of HVDC-based controller is proposed.  To grasp a physical characteristic of the inter-area oscillation frequency, the technique of overlapping decompositions is employed to achieve the subsystem embedded with the inter-area mode.  Consequently, the second-order lead/lag controller of HVDC link can be designed in this subsystem.  To acquire the desired overshoot of frequency oscillations, the parameters of the controller are automatically optimized by the Tabu Search (TS) algorithm.  The effectiveness of the designed controller is investigated in a three-area longitudinal interconnected power system which represents the interconnection between the south of Thailand and Malaysia power systems.


2021 ◽  
Author(s):  
◽  
Dhanpal Chetty

Over the last decade, power generation from renewable energy sources such as wind, hydro and solar energies have substantially increased globally and in South Africa. Of all the renewable energy sources, wind energy appears to be the most promising, considering design and costs. However, due to the intermittent nature of wind, the increased integration of wind energy into existing power systems raises several control challenges related to load frequency control (LFC) and tie-line power system stability. The stability of modern power systems, incorporating wind energy generations, will be significantly enhanced with the development of LFC strategies based on modern control theory, which is the focus of this research. This thesis presents the design, modelling and analysis, of two LFC control strategies for interconnected power systems, having wind power integrations. The first design is an optimal control strategy, based on error minimization through full state vector feedback, for a two-area interconnected power system consisting of hydro-thermal generations. The second design is a model predictive control (MPC) strategy, based output vector feedback of system state parameters, for a two-area interconnected power system consisting of thermal generations in each area. Both designs include the active power support from doubly fed induction generator based wind turbines (DFIG) in conjunction with the combined effort of a thyristor control phase shifter (TCPS) and super conducting magnetic energy storage unit (SMES). Both control strategies were simulated in MATLAB Simulink and positive results were obtained. The results show that the optimal control strategy is enhanced with power integrations using DFIG based wind turbines combined with the TCPS-SMES units and the MPC strategy is very robust and provides better dynamic performances even with parameter variations and generation rate restrictions.


2020 ◽  
Vol 34 (01) ◽  
pp. 630-637 ◽  
Author(s):  
Ferdinando Fioretto ◽  
Terrence W.K. Mak ◽  
Pascal Van Hentenryck

The Optimal Power Flow (OPF) problem is a fundamental building block for the optimization of electrical power systems. It is nonlinear and nonconvex and computes the generator setpoints for power and voltage, given a set of load demands. It is often solved repeatedly under various conditions, either in real-time or in large-scale studies. This need is further exacerbated by the increasing stochasticity of power systems due to renewable energy sources in front and behind the meter. To address these challenges, this paper presents a deep learning approach to the OPF. The learning model exploits the information available in the similar states of the system (which is commonly available in practical applications), as well as a dual Lagrangian method to satisfy the physical and engineering constraints present in the OPF. The proposed model is evaluated on a large collection of realistic medium-sized power systems. The experimental results show that its predictions are highly accurate with average errors as low as 0.2%. Additionally, the proposed approach is shown to improve the accuracy of the widely adopted linear DC approximation by at least two orders of magnitude.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 737
Author(s):  
Michał Kosmecki ◽  
Robert Rink ◽  
Anna Wakszyńska ◽  
Roberto Ciavarella ◽  
Marialaura Di Somma ◽  
...  

Along with the increasing share of non-synchronous power sources, the inertia of power systems is being reduced, which can give rise to frequency containment problems should an outage of a generator or a power infeed happen. Low system inertia is eventually unavoidable, thus power system operators need to be prepared for this condition. This paper addresses the problem of low inertia in the power system from two different perspectives. At a system level, it proposes an operation planning methodology, which utilises a combination of power flow and dynamic simulation for calculation of existing inertia and, if need be, synthetic inertia (SI) to fulfil the security criterion of adequate rate of change of frequency (RoCoF). On a device level, it introduces a new concept for active power controller, which can be applied virtually to any power source with sufficient response time to create synthetic inertia. The methodology is demonstrated for a 24 h planning period, for which it proves to be effective. The performance of SI controller activated in a battery energy storage system (BESS) is positively validated using a real-time digital simulator (RTDS). Both proposals can effectively contribute to facilitating the operation of low inertia power systems.


2021 ◽  
Author(s):  
THIAGO FIGUEIREDO DO NASCIMENTO ◽  
ANDRES ORTIZ SALAZAR

The integration of distributed generation (DG) systems based on renewable energy sources (RES) by using power converters is an emerging technology in modern power systems. Among the control strategies applied to this new configuration, the virtual synchronous generator (VSG) approach has proven to be an attractive solution due providing suitable dynamic performance. Thus, this paper presents a dynamic analysis of gridtied converters controlled by using VSG concept. This analysis is based on a dynamic model that describes the DG power flow transient characteristics. Based on this model, the grid impedance parameters variation effects on the VSG controllers dynamic performance are discussed. Simulation results are presented to evaluate the effectiveness of the theoretical analysis performed.


2020 ◽  
Author(s):  
Ana Fernández-Guillamón ◽  
Emilio Gómez-Lázaro ◽  
Eduard Muljadi ◽  
Ángel Molina-Garcia

Over recent decades, the penetration of renewable energy sources (RES), especially photovoltaic and wind power plants, has been promoted in most countries. However, as these both alternative sources have power electronics at the grid interface (inverters), they are electrically decoupled from the grid. Subsequently, stability and reliability of power systems are compromised. Inertia in power systems has been traditionally determined by considering all the rotating masses directly connected to the grid. Thus, as the penetration of renewable units increases, the inertia of the power system decreases due to the reduction of directly connected rotating machines. As a consequence, power systems require a new set of strategies to include these renewable sources. In fact, ‘hidden inertia,’ ‘synthetic inertia’ and ‘virtual inertia’ are terms currently used to represent an artificial inertia created by inverter control strategies of such renewable sources. This chapter reviews the inertia concept and proposes a method to estimate the rotational inertia in different parts of the world. In addition, an extensive discussion on wind and photovoltaic power plants and their contribution to inertia and power system stability is presented.


Sign in / Sign up

Export Citation Format

Share Document