scholarly journals CALCULATION OF A THREE-LAYER CYLINDRICAL SHELL TAKING THE CREEP INTO ACCOUNT

2019 ◽  
Vol 6 (4) ◽  
pp. 14-18 ◽  
Author(s):  
Антон Чепурненко ◽  
Anton Chepurnenko ◽  
Батыр Языев ◽  
Batyr Yazyev ◽  
Анастасия Лапина ◽  
...  

The article presents the derivation of the resolving equations for the calculation of three-layer cylindrical shells under axisymmetric loading, taking into account creep. The problem is reduced to a system of two ordinary differential equations. The solution is performed numerically using the finite difference method in combination with the Euler method.

Author(s):  
Valentin Fogang

This paper presents an approach to the Timoshenko beam theory (TBT) using the finite difference method (FDM). The TBT covers cases associated with small deflections based on shear deformation considerations, whereas the Euler–Bernoulli beam theory neglects shear deformations. The FDM is an approximate method for solving problems described with differential or partial differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. The model developed in this paper consists of formulating partial differential equations with finite differences and introducing new points (additional or imaginary points) at boundaries and positions of discontinuity (concentrated loads or moments, supports, hinges, springs, brutal change of stiffness). The introduction of additional points allows satisfying boundary and continuity conditions. First-order, second-order, and vibration analyses of structures were conducted with this model. Efforts, displacements, stiffness matrices, buckling loads, and vibration frequencies were determined. In addition, tapered beams were analyzed (e.g., element stiffness matrix, second-order analysis, and vibration analysis). Finally, the direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of structures, considering the damping. The efforts and displacements could be determined at any time.


Author(s):  
Valentin Fogang

This paper presents an approach to the vibration analysis of axially functionally graded (AFG) non-prismatic Euler-Bernoulli beams using the finite difference method (FDM). The characteristics (cross-sectional area, moment of inertia, elastic moduli, and mass density) of AFG beams vary along the longitudinal axis. The FDM is an approximate method for solving problems described with differential equations. It does not involve solving differential equations; equations are formulated with values at selected points of the structure. In addition, the boundary conditions and not the governing equations are applied at the beam’s ends. In this paper, differential equations were formulated with finite differences, and additional points were introduced at the beam’s ends and at positions of discontinuity (supports, hinges, springs, concentrated mass, spring-mass system, etc.). The introduction of additional points allowed us to apply the governing equations at the beam’s ends and to satisfy the boundary and continuity conditions. Moreover, grid points with variable spacing were also considered, the grid being uniform within beam segments. Vibration analysis of AFG non-prismatic Euler-Bernoulli beams was conducted with this model, and natural frequencies were determined. Finally, a direct time integration method (DTIM) was presented. The FDM-based DTIM enabled the analysis of forced vibration of AFG non-prismatic Euler-Bernoulli beams, considering the damping. The results obtained in this paper showed good agreement with those of other studies, and the accuracy was always increased through a grid refinement.


1966 ◽  
Vol 25 ◽  
pp. 281-287 ◽  
Author(s):  
P. E. Zadunaisky

Let bex′=f(t,x) a system of ordinary differential equations, with initial conditionsx(a) =s, which is integrated numerically by a finite difference method of orderpand constant steph.To estimate the truncation and round-off errors accumulated during the numerical process it is established a method based on the current theory of the asymptotic behaviour (whenh→0) of errors. This method should avoid the main difficulties that arise when the results of the theory must be applied to practical cases. The method has been successfully tested and applied to estimate the errors accumulated in a numerical computation of planetary perturbations on the orbit of a comet.


2021 ◽  
Vol 102 (2) ◽  
pp. 54-61
Author(s):  
S. Çavuşoğlu ◽  
◽  
O.Sh. Mukhtarov ◽  
◽  

This article is aimed at computing numerical solutions of new type of boundary value problems (BVPs) for two-linked ordinary differential equations. The problem studied here differs from the classical BVPs such that it contains additional conditions at the point of interaction, so-called transition conditions. Naturally, such type of problems is much more complicated to solve than classical problems. It is not clear how to apply the classical numerical methods to such type of boundary value transition problems (BVTPs). Based on the finite difference method (FDM) we have developed a new numerical algorithm for computing numerical solution of BVTPs for two-linked ordinary differential equations. To demonstrate the reliability and efficiency of the presented algorithm we obtained numerical solution of one BVTP and the results are compared with the corresponding exact solution. The maximum absolute errors (MAEs) are presented in a table.


Author(s):  
Hongdong Qiao ◽  
Weidong Ruan ◽  
Zhaohui Shang ◽  
Yong Bai

A new solution combining finite difference method and shooting method is developed to analyze the behavior of steep wave riser subjected to current loading. Based on the large deformation beam theory and mechanics equilibrium principle, a set of non-linear ordinary differential equations describing the motion of the steep wave riser are obtained. Then, finite difference method and shooting method are adopted and combined to solve the ordinary differential equations with zero moment boundary conditions at both the seabed end and surface end of the steep wave riser. The resulting non-linear finite difference formulations can be solved effectively by Newton-Raphson method. To improve iterative efficiency, shooting method is also employed to obtain the initial value for Newton-Raphson method. Results are compared with that of FEM by OrcaFlex, to verify the accuracy and reliability of the numerical method. Finally, a series of sensitivity analyses are also performed to highlight the influencing parameters in the steep wave riser.


Author(s):  
M A Murtaza ◽  
S B L Garg

This paper deals with the simulation of railway air brake release demand of a twin-pipe graduated release railway air brake system based on the solution of partial differential equations governing one-dimensional flow by the finite difference method supported by extrapolation/interpolation. Air brake release demand is simulated as an exponential input of pressure. The analysis incorporates the corrections needed to be used for various restrictions in the brake pipeline. Results are in good agreement with the laboratory data.


Sign in / Sign up

Export Citation Format

Share Document