scholarly journals Feature Representation Method to Improve Image Classification Performance in FPGA Embedded Boards Based on Neuromorphic Architecture

2021 ◽  
Vol 17 (2) ◽  
pp. 161-172
Author(s):  
Jae-Hyeok Jeong ◽  
Jinman Jung ◽  
Young-Sun Yun
2019 ◽  
Vol 11 (16) ◽  
pp. 1933 ◽  
Author(s):  
Yangyang Li ◽  
Ruoting Xing ◽  
Licheng Jiao ◽  
Yanqiao Chen ◽  
Yingte Chai ◽  
...  

Polarimetric synthetic aperture radar (PolSAR) image classification is a recent technology with great practical value in the field of remote sensing. However, due to the time-consuming and labor-intensive data collection, there are few labeled datasets available. Furthermore, most available state-of-the-art classification methods heavily suffer from the speckle noise. To solve these problems, in this paper, a novel semi-supervised algorithm based on self-training and superpixels is proposed. First, the Pauli-RGB image is over-segmented into superpixels to obtain a large number of homogeneous areas. Then, features that can mitigate the effects of the speckle noise are obtained using spatial weighting in the same superpixel. Next, the training set is expanded iteratively utilizing a semi-supervised unlabeled sample selection strategy that elaborately makes use of spatial relations provided by superpixels. In addition, a stacked sparse auto-encoder is self-trained using the expanded training set to obtain classification results. Experiments on two typical PolSAR datasets verified its capability of suppressing the speckle noise and showed excellent classification performance with limited labeled data.


2017 ◽  
Vol 17 (02) ◽  
pp. 1750007 ◽  
Author(s):  
Chunwei Tian ◽  
Guanglu Sun ◽  
Qi Zhang ◽  
Weibing Wang ◽  
Teng Chen ◽  
...  

Collaborative representation classification (CRC) is an important sparse method, which is easy to carry out and uses a linear combination of training samples to represent a test sample. CRC method utilizes the offset between representation result of each class and the test sample to implement classification. However, the offset usually cannot well express the difference between every class and the test sample. In this paper, we propose a novel representation method for image recognition to address the above problem. This method not only fuses sparse representation and CRC method to improve the accuracy of image recognition, but also has novel fusion mechanism to classify images. The implementations of the proposed method have the following steps. First of all, it produces collaborative representation of the test sample. That is, a linear combination of all the training samples is first determined to represent the test sample. Then, it gets the sparse representation classification (SRC) of the test sample. Finally, the proposed method respectively uses CRC and SRC representations to obtain two kinds of scores of the test sample and fuses them to recognize the image. The experiments of face recognition show that the combination of CRC and SRC has satisfactory performance for image classification.


2013 ◽  
Vol 2013 ◽  
pp. 1-8
Author(s):  
Teng Li ◽  
Huan Chang ◽  
Jun Wu

This paper presents a novel algorithm to numerically decompose mixed signals in a collaborative way, given supervision of the labels that each signal contains. The decomposition is formulated as an optimization problem incorporating nonnegative constraint. A nonnegative data factorization solution is presented to yield the decomposed results. It is shown that the optimization is efficient and decreases the objective function monotonically. Such a decomposition algorithm can be applied on multilabel training samples for pattern classification. The real-data experimental results show that the proposed algorithm can significantly facilitate the multilabel image classification performance with weak supervision.


2021 ◽  
Vol 13 (21) ◽  
pp. 4472
Author(s):  
Tianyu Zhang ◽  
Cuiping Shi ◽  
Diling Liao ◽  
Liguo Wang

Convolutional neural networks (CNNs) have been widely used in hyperspectral image classification in recent years. The training of CNNs relies on a large amount of labeled sample data. However, the number of labeled samples of hyperspectral data is relatively small. Moreover, for hyperspectral images, fully extracting spectral and spatial feature information is the key to achieve high classification performance. To solve the above issues, a deep spectral spatial inverted residuals network (DSSIRNet) is proposed. In this network, a data block random erasing strategy is introduced to alleviate the problem of limited labeled samples by data augmentation of small spatial blocks. In addition, a deep inverted residuals (DIR) module for spectral spatial feature extraction is proposed, which locks the effective features of each layer while avoiding network degradation. Furthermore, a global 3D attention module is proposed, which can realize the fine extraction of spectral and spatial global context information under the condition of the same number of input and output feature maps. Experiments are carried out on four commonly used hyperspectral datasets. A large number of experimental results show that compared with some state-of-the-art classification methods, the proposed method can provide higher classification accuracy for hyperspectral images.


IEEE Access ◽  
2021 ◽  
pp. 1-1
Author(s):  
Shichao Zhou ◽  
Junbo Wang ◽  
Wenzheng Wang ◽  
Linbo Tang ◽  
Baojun Zhao

Author(s):  
P. Zhong ◽  
Z. Q. Gong ◽  
C. Schönlieb

In recent years, researches in remote sensing demonstrated that deep architectures with multiple layers can potentially extract abstract and invariant features for better hyperspectral image classification. Since the usual real-world hyperspectral image classification task cannot provide enough training samples for a supervised deep model, such as convolutional neural networks (CNNs), this work turns to investigate the deep belief networks (DBNs), which allow unsupervised training. The DBN trained over limited training samples usually has many “dead” (never responding) or “potential over-tolerant” (always responding) latent factors (neurons), which decrease the DBN’s description ability and thus finally decrease the hyperspectral image classification performance. This work proposes a new diversified DBN through introducing a diversity promoting prior over the latent factors during the DBN pre-training and fine-tuning procedures. The diversity promoting prior in the training procedures will encourage the latent factors to be uncorrelated, such that each latent factor focuses on modelling unique information, and all factors will be summed up to capture a large proportion of information and thus increase description ability and classification performance of the diversified DBNs. The proposed method was evaluated over the well-known real-world hyperspectral image dataset. The experiments demonstrate that the diversified DBNs can obtain much better results than original DBNs and comparable or even better performances compared with other recent hyperspectral image classification methods.


2020 ◽  
Author(s):  
Harith Al-Sahaf ◽  
A Song ◽  
K Neshatian ◽  
Mengjie Zhang

Image classification is a complex but important task especially in the areas of machine vision and image analysis such as remote sensing and face recognition. One of the challenges in image classification is finding an optimal set of features for a particular task because the choice of features has direct impact on the classification performance. However the goodness of a feature is highly problem dependent and often domain knowledge is required. To address these issues we introduce a Genetic Programming (GP) based image classification method, Two-Tier GP, which directly operates on raw pixels rather than features. The first tier in a classifier is for automatically defining features based on raw image input, while the second tier makes decision. Compared to conventional feature based image classification methods, Two-Tier GP achieved better accuracies on a range of different tasks. Furthermore by using the features defined by the first tier of these Two-Tier GP classifiers, conventional classification methods obtained higher accuracies than classifying on manually designed features. Analysis on evolved Two-Tier image classifiers shows that there are genuine features captured in the programs and the mechanism of achieving high accuracy can be revealed. The Two-Tier GP method has clear advantages in image classification, such as high accuracy, good interpretability and the removal of explicit feature extraction process. © 2012 IEEE.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Qiang Cai ◽  
Fenghai Li ◽  
Yifan Chen ◽  
Haisheng Li ◽  
Jian Cao ◽  
...  

Along with the strong representation of the convolutional neural network (CNN), image classification tasks have achieved considerable progress. However, majority of works focus on designing complicated and redundant architectures for extracting informative features to improve classification performance. In this study, we concentrate on rectifying the incomplete outputs of CNN. To be concrete, we propose an innovative image classification method based on Label Rectification Learning (LRL) through kernel extreme learning machine (KELM). It mainly consists of two steps: (1) preclassification, extracting incomplete labels through a pretrained CNN, and (2) label rectification, rectifying the generated incomplete labels by the KELM to obtain the rectified labels. Experiments conducted on publicly available datasets demonstrate the effectiveness of our method. Notably, our method is extensible which can be easily integrated with off-the-shelf networks for improving performance.


Sign in / Sign up

Export Citation Format

Share Document