scholarly journals Construction of Modified CuO-Co3O4-ZnO Electrode for Acetone Detection in Breath

Author(s):  
Alaa Mohamed Elsafi ◽  
Vinotha Krishnasamy ◽  
Karthik Kannan ◽  
John-John Cabibihan ◽  
Abdulaziz Khalid Al-Ali ◽  
...  

Acetone in breath can be used as a biomarker for noninvasive detection of diabetes. The acetone level in breath is substantially high for diabetic patients. In this study, mixed metal oxide nanocomposite of CuO-Co3O4 -ZnO was used for the electrochemical detection of acetone in artificial breath solution. The structural and morphological characterization of synthesized nanocomposite was done by XRD, RAMAN and SEM (EDAX) analysis. The electrochemical study was performed and the metal oxide modified electrode showed the sensitivity of 6.52 μA cm-2 ppm-1 towards the detection of acetone in the artificial solution.

2003 ◽  
Vol 800 ◽  
Author(s):  
Brady J. Clapsaddle ◽  
Lihua Zhao ◽  
Alex E. Gash ◽  
Joe H. Satcher ◽  
Kenneth J. Shea ◽  
...  

ABSTRACTIn the field of composite energetic materials, properties such as ingredient distribution, particle size, and morphology, affect both sensitivity and performance. Since the reaction kinetics of composite energetic materials are typically controlled by the mass transport rates between reactants, one would anticipate new and potentially exceptional performance from energetic nanocomposites. We have developed a new method of making nanostructured energetic materials, specifically explosives, propellants, and pyrotechnics, using sol-gel chemistry. A novel sol-gel approach has proven successful in preparing metal oxide/silicon oxide nanocomposites in which the metal oxide is the major component. Two of the metal oxides are tungsten trioxide and iron(III) oxide, both of which are of interest in the field of energetic materials. Furthermore, due to the large availability of organically functionalized silanes, the silicon oxide phase can be used as a unique way of introducing organic additives into the bulk metal oxide materials. As a result, the desired organic functionality is well dispersed throughout the composite material on the nanoscale. By introducing a fuel metal into the metal oxide/silicon oxide matrix, energetic materials based on thermite reactions can be fabricated. The resulting nanoscale distribution of all the ingredients displays energetic properties not seen in its microscale counterparts due to the expected increase of mass transport rates between the reactants. The synthesis and characterization of these metal oxide/silicon oxide nanocomposites and their performance as energetic materials will be discussed.


Coatings ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 783 ◽  
Author(s):  
Muna Ibrahim ◽  
Karthik Kannan ◽  
Hemalatha Parangusan ◽  
Shady Eldeib ◽  
Omar Shehata ◽  
...  

ZnO-NiO nanocomposite with epoxy coating on mild steel has been fabricated by the sol–gel assisted method. The synthesized sample was used to study corrosion protection. The analysis was performed by electrochemical impedance spectroscopy in 3.5% NaCl solution. The structural and morphological characterization of the metal oxide nanocomposite was carried out using XRD and SEM with Energy Dispersive Absorption X-ray (EDAX) analysis. XRD reveals the ZnO-NiO (hexagonal and cubic) structure with an average ZnO-NiO crystallite size of 26 nm. SEM/EDAX analysis of the ZnO-NiO nanocomposite confirms that the chemical composition of the samples consists of: Zn (8.96 ± 0.11 wt.%), Ni (10.53 ± 0.19 wt.%) and O (80.51 ± 3.12 wt.%). Electrochemical Impedance Spectroscopy (EIS) authenticated that the corrosion resistance has improved for the nanocomposites of ZnO-NiO coated along with epoxy on steel in comparison to that of the pure epoxy-coated steel.


2011 ◽  
Vol 1 (9) ◽  
pp. 1653 ◽  
Author(s):  
Manoj B. Gawande ◽  
Paula S. Branco ◽  
Kalpesh Parghi ◽  
Janhavi J. Shrikhande ◽  
Rajesh Kumar Pandey ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document