Reservoir simulation and geological modeling for development planning of the Natuna gas field

2018 ◽  
Author(s):  
D. Hadiatno
2016 ◽  
Vol 56 (1) ◽  
pp. 29 ◽  
Author(s):  
Neil Tupper ◽  
Eric Matthews ◽  
Gareth Cooper ◽  
Andy Furniss ◽  
Tim Hicks ◽  
...  

The Waitsia Field represents a new commercial play for the onshore north Perth Basin with potential to deliver substantial reserves and production to the domestic gas market. The discovery was made in 2014 by deepening of the Senecio–3 appraisal well to evaluate secondary reservoir targets. The well successfully delineated the extent of the primary target in the Upper Permian Dongara and Wagina sandstones of the Senecio gas field but also encountered a combination of good-quality and tight gas pay in the underlying Lower Permian Kingia and High Cliff sandstones. The drilling of the Waitsia–1 and Waitsia–2 wells in 2015, and testing of Senecio-3 and Waitsia-1, confirmed the discovery of a large gas field with excellent flow characteristics. Wireline log and pressure data define a gross gas column in excess of 350 m trapped within a low-side fault closure that extends across 50 km2. The occurrence of good-quality reservoir in the depth interval 3,000–3,800 m is diagenetically controlled with clay rims inhibiting quartz cementation and preserving excellent primary porosity. Development planning for Waitsia has commenced with the likelihood of an early production start-up utilising existing wells and gas processing facilities before ramp-up to full-field development. The dry gas will require minimal processing, and access to market is facilitated by the Dampier–Bunbury and Parmelia gas pipelines that pass directly above the field. The Waitsia Field is believed to be the largest conventional Australian onshore discovery for more than 30 years and provides impetus and incentive for continued exploration in mature and frontier basins. The presence of good-quality reservoir and effective fault seal was unexpected and emphasise the need to consider multiple geological scenarios and to test unorthodox ideas with the drill bit.


2019 ◽  
Vol 8 (4) ◽  
pp. 1484-1489

Reservoir performance prediction is important aspect of the oil & gas field development planning and reserves estimation which depicts the behavior of the reservoir in the future. Reservoir production success is dependent on precise illustration of reservoir rock properties, reservoir fluid properties, rock-fluid properties and reservoir flow performance. Petroleum engineers must have sound knowledge of the reservoir attributes, production operation optimization and more significant, to develop an analytical model that will adequately describe the physical processes which take place in the reservoir. Reservoir performance prediction based on material balance equation which is described by Several Authors such as Muskat, Craft and Hawkins, Tarner’s, Havlena & odeh, Tracy’s and Schilthuis. This paper compares estimation of reserve using dynamic simulation in MBAL software and predictive material balance method after history matching of both of this model. Results from this paper shows functionality of MBAL in terms of history matching and performance prediction. This paper objective is to set up the basic reservoir model, various models and algorithms for each technique are presented and validated with the case studies. Field data collected related to PVT analysis, Production and well data for quality check based on determining inconsistencies between data and physical reality with the help of correlations. Further this paper shows history matching to match original oil in place and aquifer size. In the end conclusion obtained from different plots between various parameters reflect the result in history match data, simulation result and Future performance of the reservoir system and observation of these results represent similar simulation and future prediction plots result.


1991 ◽  
Vol 6 (01) ◽  
pp. 99-106 ◽  
Author(s):  
Osmar Abib ◽  
F.J. Moretti ◽  
Cen Mei ◽  
Yuzhe Yang

2012 ◽  
Author(s):  
Agha Hassan Akram ◽  
Arshad Majeed ◽  
Zaid Ashraf ◽  
Waqar A. Khan ◽  
Shah Abdur Rahman

Sign in / Sign up

Export Citation Format

Share Document