Trilogy Of Southeast Sundaland Terranes: Re-Uniting Drifted Terranes of Southeast Sundaland Using Common Marker ff The Late Cretaceous Volcanics to Volcanic-Clastics of The Meratus Mountains, South Sulawesi, And Sumba - Implications For Petroleum Opportunities

2021 ◽  
Author(s):  
A. H. Satyana

Amalgamation and dispersion of terranes characterized the growth and slivering of Southeast Sundaland into the present configuration of central Indonesia. Amalgamation of the Paternoster-West Sulawesi terrane which docked, in mid-Cretaceous time, onto the Southwest Borneo terrane, thus closed the Meso-Tethys Ocean at the Meratus suture. This made Sundaland expand its area to the east and southeast. In the Late Cretaceous time, the Ceno-Tethys oceanic plate subducted beneath Southeast Sundaland, giving rise to coeval volcanism in the Meratus Mountains and the surrounding areas. Dispersion of some terranes in Southeast Sundaland occurred in the Paleogene through successive rifting and the opening of the Makassar Straits and the Flores Sea, with an eastern drift of South Sulawesi and Sumba away from Southeast Kalimantan to their present positions. Prior to the dispersion, the Meratus Mountains, South Sulawesi, and Sumba (called here the Trilogy of Southeast Sundaland) were united or adjacent to each other and underwent similar Late Cretaceous volcanism. The Late Cretaceous Volcanics and/or Volcanic-Clastics are therefore the common marker of their union. Our field studies in 2018-2019 at Sumba, South Sulawesi, and the Meratus Mountains (South Kalimantan) in the program, called the “Trilogy of Southeast Sundaland Terranes,” sampled the Late Cretaceous volcanics/ volcanic-clastics in these areas to prove that they were once united. Petrographic, petrochemical, isotopic, and geochronological data of the rock formations, based on the recent and previous analyses, show that these rocks, in the three terranes, are co-genetic spatially and temporally thus indicating their previous unity. The paired Paleogene dispersions of South Sulawesi from South Kalimantan, and successively Sumba from South Sulawesi, had resulted in rifted structures in the present Makassar Straits, the Flores Sea, and offshore Sumba. The rifted structures contain source rocks, reservoirs, seals, and structural-stratigraphic traps. Oil has been discovered therein, so further exploration is required since these objectives have not been sufficiently explored in the past and are thus still interesting.

2007 ◽  
Vol 115 (2) ◽  
pp. 243-251 ◽  
Author(s):  
John A. Breyer ◽  
Arthur B. Busbey III ◽  
Richard E. Hanson ◽  
Kenneth E. Befus ◽  
William R. Griffin ◽  
...  

2021 ◽  
pp. SP523-2021-73
Author(s):  
D. V. Palcu ◽  
W. Krijgsman

AbstractA complex interplay of palaeoclimatic, eustatic and tectonic processes led to fragmentation and dissipation of the vast Tethys Ocean in Eocene-Oligocene times. The resulting Paratethys Sea occupied the northern Tethys region on Eurasia, grouping water masses of various subbasins, separated from each other and from the open ocean through narrow and shallow gateways and land bridges. Changes in marine gateway configuration and intra-basinal connectivity affected the regional hydrology, shifting most Paratethyan basins to extreme carbon-sink anoxic environments, anomalohaline evaporitic or brackish conditions or even endorheic lakes. Paratethys gateway restriction triggered the onset of a long-lasting (∼20 Myr) giant anoxic sea, characterised by stratified water masses and anoxic bottom water conditions, resulting in thick hydrocarbon source rocks. Here, we review the geological evolution of the “dire straits” of Paratethys that played a crucial role in the Eocene-Oligocene connectivity history of the Central Eurasian seas and we show that the main anoxic phases (Kuma and Maikop) correspond to restricted connectivity with the global ocean and a period of CO2 depletion in the atmosphere. Paratethys represents one of the largest carbon sinks of Earth's history and may thus have played a prominent role in global climate change.


2018 ◽  
Vol 170 ◽  
pp. 620-642 ◽  
Author(s):  
Mohammed Hail Hakimi ◽  
Abdulwahab S. Alaug ◽  
Abdulghani F. Ahmed ◽  
Madyan M.A. Yahya ◽  
Mohamed M. El Nady ◽  
...  

2021 ◽  
pp. M57-2021-29
Author(s):  
A.K. Khudoley ◽  
S.V. Frolov ◽  
G.G. Akhmanov ◽  
E.A. Bakay ◽  
S.S. Drachev ◽  
...  

AbstractAnabar-Lena Composite Tectono-Sedimentary Element (AL CTSE) is located in the northern East Siberia extending for c. 700 km along the Laptev Sea coast between the Khatanga Bay and Lena River delta. AL CTSE consists of rocks from Mesoproterozoic to Late Cretaceous in age with total thickness reaching 14 km. It evolved through the following tectonic settings: (1) Meso-Early Neoproterozoic intracratonic basin, (2) Ediacaran - Early Devonian passive margin, (3) Middle Devonian - Early Carboniferous rift, (4) late Early Carboniferous - latest Jurassic passive margin, (5) Permian foreland basin, (6) Triassic to Jurassic continental platform basin and (7) latest Jurassic - earliest Late Cretaceous foreland basin. Proterozoic and lower-middle Paleozoic successions are composed mainly by carbonate rocks while siliciclastic rocks dominate upper Paleozoic and Mesozoic sections. Several petroleum systems are assumed in the AL CTSE. Permian source rocks and Triassic sandstone reservoirs are the most important play elements. Presence of several mature source rock units and abundant oil- and gas-shows (both in wells and in outcrops), including a giant Olenek Bitumen Field, suggest that further exploration in this area may result in economic discoveries.


PLoS ONE ◽  
2020 ◽  
Vol 15 (8) ◽  
pp. e0238040
Author(s):  
Eric Otto Walliser ◽  
Bernd R. Schöne
Keyword(s):  

1995 ◽  
Vol 35 (1) ◽  
pp. 405 ◽  
Author(s):  
C.W. Luxton ◽  
S. T. Horan ◽  
D.L. Pickavance ◽  
M.S. Durham.

In the past 100 years of hydrocarbon exploration in the Otway Basin more than 170 exploration wells have been drilled. Prior to 1993, success was limited to small onshore gas fields. In early 1993, the La Bella-1 and Minerva-1 wells discovered significant volumes of gas in Late Cretaceous sandstones within permits VIC/P30 and VIC/P31 in the offshore Otway Basin. They are the largest discoveries to date in the basin and have enabled new markets to be considered for Otway Basin gas. These discoveries were the culmination of a regional evaluation of the Otway Basin by BHP Petroleum which highlighted the prospectivity of VIC/P30 and VIC/P31. Key factors in this evaluation were:geochemical studies that indicated the presence of source rocks with the potential to generate both oil and gas;the development of a new reservoir/seal model; andimproved seismic data quality through reprocessing and new acquisition.La Bella-1 tested the southern fault block of a faulted anticlinal structure in the southeast corner of VIC/P30. Gas was discovered in two Late Cretaceous sandstone intervals of the Shipwreck Group (informal BHP Petroleum nomenclature). Reservoirs are of moderate to good quality and are sealed vertically, and by cross-fault seal, by Late Cretaceous claystones of the Sherbrook Group. The gas is believed to have been sourced from coals and shales of the Early Cretaceous Eumeralla Formation and the structure appears to be filled to spill as currently mapped. RFT samples recovered dry gas with 13 moI-% CO2 and minor amounts of condensate.Minerva-1 tested the northern fault block of a faulted anticline in the northwest corner of VIC/ P31. Gas was discovered in three excellent quality reservoir horizons within the Shipwreck Group. Late Cretaceous Shipwreck Group silty claystones provide vertical and cross-fault seal. The hydrocarbon source is similar to that for the La Bella accumulation and the structure appears to be filled to spill. A production test was carried out in the lower sand unit and flowed at a rig limited rate of 28.8 MMCFGD (0.81 Mm3/D) through a one-inch choke. The gas is composed mainly of methane, with minor amounts of condensate and 1.9 mol-% C02. Minerva-2A was drilled later in 1993 as an appraisal well to test the southern fault block of the structure to prove up sufficient reserves to pursue entry into developing gas markets. It encountered a similar reservoir unit of excellent quality, with a gas-water contact common with that of the northern block of the structure.The La Bella and Minerva gas discoveries have greatly enhanced the prospectivity of the offshore portion of the Otway Basin. The extension of known hydrocarbon accumulations from the onshore Port Campbell embayment to the La Bella-1 well location, 55 km offshore, demonstrates the potential of this portion of the basin.


Zootaxa ◽  
2012 ◽  
Vol 3271 (1) ◽  
pp. 17 ◽  
Author(s):  
NILS SCHLÜTER ◽  
MANFRED KUTSCHER ◽  
ANDREW B. SMITH ◽  
JOHN W. M. JAGT ◽  
JACKIE A. LEES

A revision of Late Cretaceous species of the common regular echinoid genus Phymosoma Haime in d’Archiac & Haime,1853 has revealed that Cidarites granulosus Goldfuss, 1829 has generally been misinterpreted in the literature. The typespecimen of this species is undoubtedly conspecific with material from the lower Maastrichtian of Rügen, northeast Ger-many. What authors have referred to as Phymosoma granulosum in northern temperate (boreal) regions of western Europeand in the Middle East in fact represents an undescribed form which we here name Phymosoma ravni sp. nov., which dif-fers from Cidarites granulosus in having better-developed biserial pore zones adapically, proportionally larger mamelonson primary tubercles, a flush peristome, and stout, non-facetted primary spines. The proper placement of Cidarites granulosus within the family Phymosomatidae Pomel, 1883 is ambiguous; it appears to be most closely related to Phymosoma.


2020 ◽  
Author(s):  
Semih Can Ülgen ◽  
A.M. Celâl Şengör ◽  
Mehmet Keskin ◽  
Namık Aysal

<p>In many ancient and active volcanic provinces dyke systems represent radial and concentric patterns. In İstanbul, NW Turkey, late Cretaceous dykes, which are emplaced in pre-Cretaceous basement rocks consisting of sedimentary rocks of Palaeozoic and Triassic ages, have both patterns. In the region, late Cretaceous volcanism is represented by three elements, (1) The Çavuşbaşı granitoid, (2) volcano-sedimentary units and (3) dykes.</p><p>Age of the Çavuşbaşı granitoid is given as 67.91±0.63 to 67.59±0.5 Ma. It is emplaced in shallow depth and has an indistinct contact aureole. Volcano sedimentary units were deposited in an intra-arc basin. Three types of dykes are reported in the region: lamprophyre, diabase and intermediate to felsic dykes (72.49±0.79 to 65.44±0.93 Ma). Different petrology and the crystallization depths of the crystals in the dykes and the Çavuşbaşı granitoid suggest two different magma chambers emplaced at two different depths, the Çavuşbaşı granitoid representing the shallower one.</p><p>Upper Cretaceous dykes are concentrated around the Çavuşbaşı granitoid and extend almost as far as 30 km away from the pluton. The intrusion of the plutonic body of the Çavuşbaşı granitoid caused a dome structure in the basement rocks. The formation of this dome structure may have controlled the stress field and the orientation of the dyke system. Similar patterns are observed in the British Tertiary igneous province, Galapagos volcanoes, Boa Vista (Cape Verde), Summer Coon volcano, Spanish Peak Mountain and Dike Mountain (Colorado), Vesuvio, Etna and Stromboli (Italy).</p><p>We suggest that Upper Cretaceous volcanic edifice in the İstanbul region is related to an arc volcano similar to the andesitic volcanoes in the Sumatra Island; we name it the Bosphorus Volcano.  </p>


2016 ◽  
Vol 4 (23) ◽  
pp. 1 ◽  
Author(s):  
Muhammad Teguh Nagir ◽  
Tri Atmowidi ◽  
Sih Kahono

The giant honey bee, Apis dorsata binghami is subspecies of Apis dorsata. This species of bee was only found in Sulawesi and its surrounding islands. This study is aimed to study the distribution and characteristics of nest and nesting trees, nesting behavior of Apis dorsata binghami  in the forests of Maros, South Sulawesi, Indonesia. The distributions of nests were observed using a survey method to record the species and characteristics of nesting trees, as well as the conditions around the nest. Results showed that 102 nests (17 active nests, 85 abandoned combs) of A. d. binghami were found. We found 34 species belong to 27 genera in 17 families of plants as nesting sites of giant honey bee. The common tree species used as nesting sites were Ficus subulata (Moraceae), Adenanthera sp. (Fabaceae), Spondias pinnata (Anacardiaceae), Artocarpus sericoarpus (Moraceae), Alstonia scholaris (Apocynaceae), Knema cinerea (Myristicaceae), Litsea mappacea (Lauraceae), and Palaquium obovatum (Sapotaceae). The nests were found in 0-11 meters (11 nests), 11-20 meters (40 nests), and more than 21 meters (51 nests) from ground level. The nests of giant honey bee were found in sturdy and woody branches, hard to peel, the slope of the branches was <60°, and nests were protected by liane plants, foliage, or both them.


Sign in / Sign up

Export Citation Format

Share Document