scholarly journals STUDY OF PLANETARY MAGNETIC FIELDS

Author(s):  
Samir Ahmed Hamouda ◽  
Nada Eaz-Alden Emgau ◽  
Rabab Muftah Bohagar ◽  
Aisha Mohammed Eissa

Magnetic fields are an important phenomenon in the solar system and beyond. Their causes are complex and have a variety of effects on their surroundings; they have become a critical tool for the exploration of solar system bodies. Magnetic fields play a very important role in the Sun. From sunspots to coronal heating, from solar ares to coronal mass ejections all these apparently diverse phenomena have magnetic fields as their ultimate cause. The study of the terrestrial dynamo is a difficult problem made more so by the inability to construct planetary-scale dynamos for laboratory study. However, understanding the nature of the matter comprising the Solar System is crucial for understanding the mechanism that generates Earth’s geomagnetic field and the magnetic fields of other planets and satellites planetary dynamo models. In this study, in this study, classifications of planets are introduced. Development of planetary magnetism model is discussed. General concepts of the magnetic dynamo theory are introduced. Properties of planetary magnetic fields are presented and Earth crustal magnetic field is briefly discussed.

2017 ◽  
Vol 5 (9) ◽  
pp. 145-151
Author(s):  
Samir A Hamouda ◽  
Eman A. Alsslam Alfadeel ◽  
Mohamed Belhasan Mohamed

Gravity plays a major role in the planetary formation and the development of the solar system. Gravity attraction is the essence of a power that holds and governs the universe; it makes the planets in the solar system revolve around the sun and the moons around their planets. Magnetic fields are also an important phenomenon in the solar system and beyond. Their causes are complex and have a variety of effects on their surroundings; they have become a critical tool for the exploration of solar system bodies. However, the study of the mechanisms of planets formation in the solar system is a difficult problem made more so by the inability to construct planetary-scale models for laboratory study. However, understanding the nature of the matter comprising the Solar System is crucial for understanding the mechanism that generates planetary magnetic fields and planetary gravity. In this study, a brief history about the development of planetary gravity is presented. Some data about the physical properties of planets in the solar system are presented and discussed. However, much work is still needed before the planetary gravity and planetary magnetic field processes are fully understood and full advantage be taken of the implications of both phenomena  observations.


2009 ◽  
Vol 152 (1-4) ◽  
pp. 391-421 ◽  
Author(s):  
Joachim Saur ◽  
Fritz M. Neubauer ◽  
Karl-Heinz Glassmeier

Author(s):  
Joachim Saur ◽  
Fritz M. Neubauer ◽  
Karl-Heinz Glassmeier

Author(s):  
K. M. Soderlund ◽  
S. Stanley

The Voyager 2 flybys of Uranus and Neptune revealed the first multipolar planetary magnetic fields and highlighted how much we have yet to learn about ice giant planets. In this review, we summarize observations of Uranus’ and Neptune’s magnetic fields and place them in the context of other planetary dynamos. The ingredients for dynamo action in general, and for the ice giants in particular, are discussed, as are the factors thought to control magnetic field strength and morphology. These ideas are then applied to Uranus and Neptune, where we show that no models are yet able to fully explain their observed magnetic fields. We then propose future directions for missions, modelling, experiments and theory necessary to answer outstanding questions about the dynamos of ice giant planets, both within our solar system and beyond. This article is part of a discussion meeting issue ‘Future exploration of ice giant systems’.


2008 ◽  
Vol 14 (2) ◽  
pp. 56-67
Author(s):  
Ya.S. Yatskiv ◽  
◽  
A.P. Vidmachenko ◽  
O.V. Morozhenko ◽  
M.G. Sosonkin ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Q. H. S. Chan ◽  
A. Stephant ◽  
I. A. Franchi ◽  
X. Zhao ◽  
R. Brunetto ◽  
...  

AbstractUnderstanding the true nature of extra-terrestrial water and organic matter that were present at the birth of our solar system, and their subsequent evolution, necessitates the study of pristine astromaterials. In this study, we have studied both the water and organic contents from a dust particle recovered from the surface of near-Earth asteroid 25143 Itokawa by the Hayabusa mission, which was the first mission that brought pristine asteroidal materials to Earth’s astromaterial collection. The organic matter is presented as both nanocrystalline graphite and disordered polyaromatic carbon with high D/H and 15N/14N ratios (δD =  + 4868 ± 2288‰; δ15N =  + 344 ± 20‰) signifying an explicit extra-terrestrial origin. The contrasting organic feature (graphitic and disordered) substantiates the rubble-pile asteroid model of Itokawa, and offers support for material mixing in the asteroid belt that occurred in scales from small dust infall to catastrophic impacts of large asteroidal parent bodies. Our analysis of Itokawa water indicates that the asteroid has incorporated D-poor water ice at the abundance on par with inner solar system bodies. The asteroid was metamorphosed and dehydrated on the formerly large asteroid, and was subsequently evolved via late-stage hydration, modified by D-enriched exogenous organics and water derived from a carbonaceous parent body.


2018 ◽  
Vol 27 (1) ◽  
pp. 183-231 ◽  
Author(s):  
Pablo Cuartas-Restrepo

Abstract This work seeks to summarize some special aspects of a type of exoplanets known as super-Earths (SE), and the direct influence of these aspects in their habitability. Physical processes like the internal thermal evolution and the generation of a protective Planetary Magnetic Field (PMF) are directly related with habitability. Other aspects such as rotation and the formation of a solid core are fundamental when analyzing the possibilities that a SE would have to be habitable. This work analyzes the fundamental theoretical aspects on which the models of thermal evolution and the scaling laws of the planetary dynamos are based. These theoretical aspects allow to develop models of the magnetic evolution of the planets and the role played by the PMF in the protection of the atmosphere and the habitability of the planet.


Sign in / Sign up

Export Citation Format

Share Document