EXERGY ANALYSIS OF GEOTHERMAL POWER PLANT KAMOJANG 68, 3 MW IN CAPACITY

2018 ◽  
Vol 7 (2) ◽  
Author(s):  
Amiral Aziz

The importance of exergy analysis in preliminary design of geothermal power has been proven. An exergy analysis was carried out and the locations and quantities of exergy losses, wastes and destructions in the different processes of the plan were pinpointed. The obtained results show that the total exergy available from production wells KMJ 68 was calculated to be 6967.55 kW. The total exergy received from wells which is connected during the analysis and enter into the separator was found to be 6337.91 kW in which 5808.8 kW is contained in the steam phase. The overall exergy efficiency for the power plant is 43.06% and the overall energy efficiency is 13.05 %, in both cases with respect to the exergy from the connected wells. The parts of the system with largest exergy destruction are the condenser, the turbine, and the disposed waste brinekeywords: exergy, irreversibility, geothermal power plant, KMJ 68

2016 ◽  
Vol 819 ◽  
pp. 523-529 ◽  
Author(s):  
Nasruddin ◽  
Septian Khairul Masdi ◽  
Arief Surachman

This study presents four analysis at unit 4 Kamojang geothermal power plant are exergy analysis at current condition, exergy efficiency optimization, economic optimization, and exergoeconomic optimization with wellhead valve pressure as a variable. Calculations are conducted by using the MATLAB. Thermodynamics characteristic of geothermal fluid assumed as water characteristic which get from REFPROP. Wellhead pressure operational condition 10 bar has exergy efficiency 31.91%. Exergy efficiency optimization has wellhead valve pressure 5.06 bar, exergy efficiency 47.3%, and system cost US$ 3,957,100. Economic optimization has well pressure 11 bar, exergy efficiency 22.13%, and system cost US$ 2,242,200. Exergoeconomic optimization has 15 optimum condition. Exergoeconomic optimization aims to analyze the optimum wellhead valve pressure for maximum exergy efficiency and minimum cost of power plant system.


Tatapani Geothermal field is one of the most promising low-enthalpy geothermal fields in central India, located on Son-Narmada lineament in the state of Chhattisgarh, India. The Tatapani geothermal field geological, geo-chemical & reservoir data has been compiled and analysed for evaluating true power potential & better understanding of the field. The low enthalpy geothermal reservoirs can be utilized for power production using Organic Rankine Cycle (ORC) or binary power cycle. Based on previous research works done, the Tatapani geothermal field has been found to be very prospective and has got huge potential for power generation. The binary power cycle has been studied in detail along with thermodynamic concepts. In addition, similar low enthalpy geothermal power plants (conceptual & existing both) have been thoroughly studied in order to understand the concepts and methodology to perform technical feasibility based on thermodynamic and exergy analysis. The literature review covers the previous works done on Tatapani geothermal field including works on other geothermal fields in India along with previous research works for Thermodynamic & Exergy Analysis carried-out for binary geothermal power plants across the world for similar low enthalpy prospects. The methods of performing thermodynamic and exergy analysis for a potential geothermal power plant has been studied and compared. Exergy analysis highlights the areas of primary exergy destruction at various plant components and can be illustrated in the form of exergy flow diagram. The loss of exergy indicates the potential reasons for the inefficiencies within a process and exergic efficiency as conversion of input heat energy from the brine in to useful work output. The exergic efficiencies can be calculated for each component along with exergy destruction. The detailed study has been conducted in order to gather the knowledge regarding conducting the feasibility of setting up binary geothermal power plant at Tatapani from technical point of view using thermodynamic concepts.


2007 ◽  
Vol 11 (3) ◽  
pp. 135-142 ◽  
Author(s):  
Aleksandra Borsukiewicz-Gozdur ◽  
Wladyslaw Nowak

In the work presented are the results of investigations regarding the effectiveness of operation of power plant fed by geothermal water with the flow rate of 100, 150, and 200 m3/h and temperatures of 70, 80, and 90 ?C, i. e. geothermal water with the parameters available in some towns of West Pomeranian region as well as in Stargard Szczecinski (86.4 ?C), Poland. The results of calculations regard the system of geothermal power plant with possibility of utilization of heat for technological purposes. Analyzed are possibilities of application of different working fluids with respect to the most efficient utilization of geothermal energy. .


1998 ◽  
Vol 120 (2) ◽  
pp. 179-184 ◽  
Author(s):  
M. Kanog˘lu ◽  
Y. A. C¸engel ◽  
R. H. Turner

Geothermal energy has been used for power generation, space and process heating, and to a lesser extent, space cooling. However, it is rarely used for cogeneration. This paper shows how a district heating/cooling system can be incorporated into an existing geothermal power plant to make the best use of extracted hot brine. In the power plant analysis, exergy destruction throughout the plant is quantified and illustrated using an exergy cascade. The primary source of exergy destruction in the plant is determined to be the reinjection of used brine into the ground, which accounts for 48.1 percent of the total exergy destruction. The overall first and the second law efficiencies of the plant are calculated to be 5.6 and 28.3 percent, respectively, based on the exergy of the geothermal fluid at downwell, and 5.7 and 28.6 percent, respectively, based on the exergy of the geothermal fluid at wellhead. A binary system is considered for the heating/cooling district to avoid corrosion and scaling problems. The heating system, as designed, has the capability to meet the entire needs of the Reno Industrial Park under peak load conditions, and has 30 percent reserve for future expansion. An absorption system will be used for the cooling of the intended 40 percent floor space of the industrial park. An economic analysis shows that the incorporation of the district heating/cooling system with 2,785,000 m2 of floor space connected to the geothermal grid appears to be feasible, and financially very attractive. Further, using the returning freshwater from the district heating/cooling system for partial cooling of the binary fluid of the power plant can save up to 15 percent of the fan work.


Energy ◽  
2016 ◽  
Vol 112 ◽  
pp. 254-263 ◽  
Author(s):  
Harun Gökgedik ◽  
Muhammet Yürüsoy ◽  
Ali Keçebaş

Sign in / Sign up

Export Citation Format

Share Document