scholarly journals Text Recognition and Machine Learning: For Impaired Robots and Humans

2019 ◽  
Vol 2 (2) ◽  
pp. 31-32
Author(s):  
Nadia Gifford ◽  
Rafiq Ahmad ◽  
Mario Soriano Morales

As robots and machines become more reliable, developing tools that utilize their potential in manufacturing and beyond is an important step being addressed by many, including the LIMDA team at the University of Alberta. A common and effective means to improve artificial performance is through optical character recognition methods. Within the category of artificial intelligence under classification machine learning, research has focussed on the benefits of convolutional neural networks (CNN) and the improvement provided compared to its parent method, neural networks. Neural networks serious flaw comes from memorization and the lack of learning about what the images contain, while CNN's combat those issues. CNN’s are designed to connect information received by the network and begins to closely mimic how humans experience learns. Using the programming language Python and machine learning libraries such as Tensorflow and Keras, different versions of CNN’s were tested against datasets containing low-resolution images with handwritten characters. The first two CNN’s were trained against the MNIST database against digits 0 through 9. The results from these tests illustrated the benefits of elements like max-pooling and the addition of convolutional layers. Taking that knowledge a final CNN was written to prove the accuracy of the algorithm against alphabet characters. After training and testings were complete the network showed an average 99.34% accuracy and 2.23% to the loss function. Time-consuming training epochs that don’t wield higher or more impressive results could also be eliminated. These and similar CNN’s have proven to yield positive results and in future research could be implemented into the laboratory to improve safety. Continuing to develop this work will lead to better translators for language, solid text to digital text transformation, and aides for the visual and speech impaired.

Optical Character Recognition or Optical Character Reader (OCR) is a pattern-based method consciousness that transforms the concept of electronic conversion of images of handwritten text or printed text in a text compiled. Equipment or tools used for that purpose are cameras and apartment scanners. Handwritten text is scanned using a scanner. The image of the scrutinized document is processed using the program. Identification of manuscripts is difficult compared to other western language texts. In our proposed work we will accept the challenge of identifying letters and letters and working to achieve the same. Image Preprocessing techniques can effectively improve the accuracy of an OCR engine. The goal is to design and implement a machine with a learning machine and Python that is best to work with more accurate than OCR's pre-built machines with unique technologies such as MatLab, Artificial Intelligence, Neural networks, etc.


2021 ◽  
pp. 894-911
Author(s):  
Bhavesh Kataria, Dr. Harikrishna B. Jethva

India's constitution has 22 languages written in 17 different scripts. These materials have a limited lifespan, and as generations pass, these materials deteriorate, and the vital knowledge is lost. This work uses digital texts to convey information to future generations. Optical Character Recognition (OCR) helps extract information from scanned manuscripts (printed text). This paper proposes a simple and effective solution of optical character recognition (OCR) Sanskrit Character from text document images using long short-term memory (LSTM) and neural networks of Sanskrit Characters. Existing methods focuses only upon the single touching characters. But our main focus is to design a robust method using Bidirectional Long Short-Term Memory (BLSTM) architecture for overlapping lines, touching characters in middle and upper zone and half character which would increase the accuracy of the present OCR system for recognition of poorly maintained Sanskrit literature.


Author(s):  
Karthikeyan P. ◽  
Karunakaran Velswamy ◽  
Pon Harshavardhanan ◽  
Rajagopal R. ◽  
JeyaKrishnan V. ◽  
...  

Machine learning is the part of artificial intelligence that makes machines learn without being expressly programmed. Machine learning application built the modern world. Machine learning techniques are mainly classified into three techniques: supervised, unsupervised, and semi-supervised. Machine learning is an interdisciplinary field, which can be joined in different areas including science, business, and research. Supervised techniques are applied in agriculture, email spam, malware filtering, online fraud detection, optical character recognition, natural language processing, and face detection. Unsupervised techniques are applied in market segmentation and sentiment analysis and anomaly detection. Deep learning is being utilized in sound, image, video, time series, and text. This chapter covers applications of various machine learning techniques, social media, agriculture, and task scheduling in a distributed system.


Author(s):  
Nicolas Zhou ◽  
Erin M. Corsini ◽  
Shida Jin ◽  
Gregory R. Barbosa ◽  
Trey Kell ◽  
...  

In the first part of this series, we introduced the tools of Big Data, including Not Only Standard Query Language data warehouse, natural language processing (NLP), optical character recognition (OCR), and Internet of Things (IoT). There are nuances to the utilization of these analytics tools, which must be well understood by clinicians seeking to take advantage of these innovative research strategies. One must recognize technical challenges to NLP, such as unintended search outcomes and variability in the expression of human written texts. Other caveats include dealing written texts in image formats, which may ultimately be handled with transformation to text format by OCR, though this technology is still under development. IoT is beginning to be used in cardiac monitoring, medication adherence alerts, lifestyle monitoring, and saving traditional labs from equipment failure catastrophes. These technologies will become more prevalent in the future research landscape, and cardiothoracic surgeons should understand the advantages of these technologies to propel our research to the next level. Experience and understanding of technology are needed in building a robust NLP search result, and effective communication with the data management team is a crucial step in successful utilization of these technologies. In this second installment of the series, we provide examples of published investigations utilizing the advanced analytic tools introduced in Part I. We will explain our processes in developing the research question, barriers to achieving the research goals using traditional research methods, tools used to overcome the barriers, and the research findings.


2016 ◽  
Vol 92 (01) ◽  
pp. 53-56
Author(s):  
George Sterling ◽  
Amy Goodbrand ◽  
Sheena A. Spencer

Tri-Creeks Experimental Watershed was initiated to compare the effects of logging and riparian buffers in three subbasins (Wampus, Deerlick, and Eunice Creeks) and to evaluate the effectiveness of timber harvesting ground rules in protecting fisheries and water resources. The watershed study was terminated in 1985 shortly after the harvest. In 2015, the University of Alberta re-established groundwater monitoring, hydrometric, and meteorological stations in Tri-Creeks Experimental watershed. Future research will utilize the 20-year historic data set and current data to study the the effect of forest cover change on the streamflow regime and fish populations. The objective of this paper is to summarize the novel results and available data from 1965–1987 for the Tri-Creeks Experimental Watershed.


Author(s):  
Yaseen Khather Yaseen ◽  
Alaa Khudhair Abbas ◽  
Ahmed M. Sana

Today, images are a part of communication between people. However, images are being used to share information by hiding and embedding messages within it, and images that are received through social media or emails can contain harmful content that users are not able to see and therefore not aware of. This paper presents a model for detecting spam on images. The model is a combination of optical character recognition, natural language processing, and the machine learning algorithm. Optical character recognition extracts the text from images, and natural language processing uses linguistics capabilities to detect and classify the language, to distinguish between normal text and slang language. The features for selected images are then extracted using the bag-of-words model, and the machine learning algorithm is run to detect any kind of spam that may be on it. Finally, the model can predict whether or not the image contains any harmful content. The results show that the proposed method using a combination of the machine learning algorithm, optical character recognition, and natural language processing provides high detection accuracy compared to using machine learning alone.


Sign in / Sign up

Export Citation Format

Share Document