scholarly journals Impact of changing channel length and band gaps of a carbon nanotube on the current of a Carbon Nanotube Field Effect Transistors (CNTFETs)

2020 ◽  
Vol 23 (1) ◽  
pp. 21-29
Author(s):  
Khoder Bachour ◽  
Majdeddin Ali ◽  
Ied Alabboud

This paper introduce a new way to simulate the effect of changing the length and the band gap of the nanotube on the current of carbon nanotube field effect transistors (CNTFET( by using simulation tools: FETToy, CNTFET lab, CNT bands 2.0, since this simulation were done in different parameters of ZigZag nanotube. We use three simulations tools because each tool provides simulation of parameters that differ from the parameters of other tools, so we can study more parameters that we change which this article is studied. In this paper we studied the effect of changing of ZigZag nanotube length which has a chirality (n,0) on the current of the CNTFET. We have found that the relationship between nanotube length and the current of the CNTFET is an inverse proportional, as the nanotube length increase, the current of CNTFET decrease, and the relation between the band gap of the ZigZag nanotube and current of the CNTFET has been studied too. We have found that this relationship is an inverse proportional, as the band gap increase, the current of CNTFET decrease. Also, we studied the relation between the band gap of the ZigZag nanotube and the average velocity of charges in CNTFET, we found that relationship is an inverse proportional, as the band gap increase, the average velocity of charges of CNTFET decrease. 

2011 ◽  
Vol 181-182 ◽  
pp. 343-348
Author(s):  
K.C. Narasimhamurthy ◽  
Roy Paily Palathinkal

In this paper, we present the fabrication and characterization of semiconducting carbon nanotube thin-film field-effect transistors (SN-TFTs). High-k dielectric material, hafnium-oxide (HfOX) is used as the gate-oxide of the device. A Thin-film of semi-conducting single walled carbon nanotube (SWCNT) is deposited on the amino-silane modified HfOX surface. Two types of SN-TFTs with interdigitated source and drain contacts are fabricated using 90% and 95% purity of semiconducting SWCNTs (s-SWCNT), have exhibited a p-type behavior with a distinct linear and saturation region of operation. For 20 µm channel length SN-TFT with 95% pure s-SWCNTs has a peak on-off current ratio of 3.5×104 and exhibited a transconductance of 950 µS. The SN-TFT fabricated with HfOX gate oxide has shown a steep sub-threshold slope of 750 mV/decade and threshold voltage of -0.7 V. The SN-TFT of channel length 50 µm has exhibited a maximum mobility of 26.9 cm2/V•s.


2010 ◽  
Vol 53 (1) ◽  
pp. 253-256 ◽  
Author(s):  
Ying Feng ◽  
ShiHua Huang ◽  
Kai Kang ◽  
YuGuang Feng

2014 ◽  
Vol 5 ◽  
pp. 2081-2091 ◽  
Author(s):  
Hari Krishna Salila Vijayalal Mohan ◽  
Jianing An ◽  
Yani Zhang ◽  
Chee How Wong ◽  
Lianxi Zheng

A single-walled carbon nanotube (SWCNT) in a field-effect transistor (FET) configuration provides an ideal electronic path for label-free detection of nucleic acid hybridization. The simultaneous influence of more than one response mechanism in hybridization detection causes a variation in electrical parameters such as conductance, transconductance, threshold voltage and hysteresis gap. The channel length (L) dependence of each of these parameters necessitates the need to include them when interpreting the effect of L on the response to hybridization. Using the definitions of intrinsic effective mobility (µe) and device field-effect mobility (µf), two new parameters were defined to interpret the effect of L on the FET response to hybridization. Our results indicate that FETs with ≈300 µm long SWCNT exhibited the most appreciable response to hybridization, which complied with the variation trend in response to the newly defined parameters.


Sign in / Sign up

Export Citation Format

Share Document