Identification of Reptile Species Using Convolutional Neural Networks (CNN)

2020 ◽  
Vol 4 (5) ◽  
pp. 899-906
Author(s):  
Olvy Diaz Annesa ◽  
Condro Kartiko ◽  
Agi Prasetiadi

Reptiles are one of the most common fauna in the territory of Indonesia. quite a lot of people who have an interest in knowing more about this fauna in order to increase knowledge. Based on previous research, Deep Learning is needed in particular the CNN method for computer programs to identify reptile species through images. This reseacrh aims to determine the right model in producing high accuracy in the identification of reptile species. Thousands of images are generated through data augmentation processes for manually captured images. Using the Python programming language and Dropout technique, an accuracy of 93% was obtained by this research in identifying 14 different types of reptiles.  

Author(s):  
Hajar Maseeh Yasin ◽  
Adnan Mohsin Abdulazeez

Image compression is an essential technology for encoding and improving various forms of images in the digital era. The inventors have extended the principle of deep learning to the different states of neural networks as one of the most exciting machine learning methods to show that it is the most versatile way to analyze, classify, and compress images. Many neural networks are required for image compressions, such as deep neural networks, artificial neural networks, recurrent neural networks, and convolution neural networks. Therefore, this review paper discussed how to apply the rule of deep learning to various neural networks to obtain better compression in the image with high accuracy and minimize loss and superior visibility of the image. Therefore, deep learning and its application to different types of images in a justified manner with distinct analysis to obtain these things need deep learning.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


2020 ◽  
Vol 68 (4) ◽  
pp. 283-293
Author(s):  
Oleksandr Pogorilyi ◽  
Mohammad Fard ◽  
John Davy ◽  
Mechanical and Automotive Engineering, School ◽  
Mechanical and Automotive Engineering, School ◽  
...  

In this article, an artificial neural network is proposed to classify short audio sequences of squeak and rattle (S&R) noises. The aim of the classification is to see how accurately the trained classifier can recognize different types of S&R sounds. Having a high accuracy model that can recognize audible S&R noises could help to build an automatic tool able to identify unpleasant vehicle interior sounds in a matter of seconds from a short audio recording of the sounds. In this article, the training method of the classifier is proposed, and the results show that the trained model can identify various classes of S&R noises: simple (binary clas- sification) and complex ones (multi class classification).


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Malte Seemann ◽  
Lennart Bargsten ◽  
Alexander Schlaefer

AbstractDeep learning methods produce promising results when applied to a wide range of medical imaging tasks, including segmentation of artery lumen in computed tomography angiography (CTA) data. However, to perform sufficiently, neural networks have to be trained on large amounts of high quality annotated data. In the realm of medical imaging, annotations are not only quite scarce but also often not entirely reliable. To tackle both challenges, we developed a two-step approach for generating realistic synthetic CTA data for the purpose of data augmentation. In the first step moderately realistic images are generated in a purely numerical fashion. In the second step these images are improved by applying neural domain adaptation. We evaluated the impact of synthetic data on lumen segmentation via convolutional neural networks (CNNs) by comparing resulting performances. Improvements of up to 5% in terms of Dice coefficient and 20% for Hausdorff distance represent a proof of concept that the proposed augmentation procedure can be used to enhance deep learning-based segmentation for artery lumen in CTA images.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Chyan-long Jan

Because of the financial information asymmetry, the stakeholders usually do not know a company’s real financial condition until financial distress occurs. Financial distress not only influences a company’s operational sustainability and damages the rights and interests of its stakeholders, it may also harm the national economy and society; hence, it is very important to build high-accuracy financial distress prediction models. The purpose of this study is to build high-accuracy and effective financial distress prediction models by two representative deep learning algorithms: Deep neural networks (DNN) and convolutional neural networks (CNN). In addition, important variables are selected by the chi-squared automatic interaction detector (CHAID). In this study, the data of Taiwan’s listed and OTC sample companies are taken from the Taiwan Economic Journal (TEJ) database during the period from 2000 to 2019, including 86 companies in financial distress and 258 not in financial distress, for a total of 344 companies. According to the empirical results, with the important variables selected by CHAID and modeling by CNN, the CHAID-CNN model has the highest financial distress prediction accuracy rate of 94.23%, and the lowest type I error rate and type II error rate, which are 0.96% and 4.81%, respectively.


Author(s):  
Tahani Aljohani ◽  
Alexandra I. Cristea

Massive Open Online Courses (MOOCs) have become universal learning resources, and the COVID-19 pandemic is rendering these platforms even more necessary. In this paper, we seek to improve Learner Profiling (LP), i.e. estimating the demographic characteristics of learners in MOOC platforms. We have focused on examining models which show promise elsewhere, but were never examined in the LP area (deep learning models) based on effective textual representations. As LP characteristics, we predict here the employment status of learners. We compare sequential and parallel ensemble deep learning architectures based on Convolutional Neural Networks and Recurrent Neural Networks, obtaining an average high accuracy of 96.3% for our best method. Next, we predict the gender of learners based on syntactic knowledge from the text. We compare different tree-structured Long-Short-Term Memory models (as state-of-the-art candidates) and provide our novel version of a Bi-directional composition function for existing architectures. In addition, we evaluate 18 different combinations of word-level encoding and sentence-level encoding functions. Based on these results, we show that our Bi-directional model outperforms all other models and the highest accuracy result among our models is the one based on the combination of FeedForward Neural Network and the Stack-augmented Parser-Interpreter Neural Network (82.60% prediction accuracy). We argue that our prediction models recommended for both demographics characteristics examined in this study can achieve high accuracy. This is additionally also the first time a sound methodological approach toward improving accuracy for learner demographics classification on MOOCs was proposed.


2021 ◽  
Vol 13 (3) ◽  
pp. 809-820
Author(s):  
V. Sowmya ◽  
R. Radha

Vehicle detection and recognition require demanding advanced computational intelligence and resources in a real-time traffic surveillance system for effective traffic management of all possible contingencies. One of the focus areas of deep intelligent systems is to facilitate vehicle detection and recognition techniques for robust traffic management of heavy vehicles. The following are such sophisticated mechanisms: Support Vector Machine (SVM), Convolutional Neural Networks (CNN), Regional Convolutional Neural Networks (R-CNN), You Only Look Once (YOLO) model, etcetera. Accordingly, it is pivotal to choose the precise algorithm for vehicle detection and recognition, which also addresses the real-time environment. In this study, a comparison of deep learning algorithms, such as the Faster R-CNN, YOLOv2, YOLOv3, and YOLOv4, are focused on diverse aspects of the features. Two entities for transport heavy vehicles, the buses and trucks, constitute detection and recognition elements in this proposed work. The mechanics of data augmentation and transfer-learning is implemented in the model; to build, execute, train, and test for detection and recognition to avoid over-fitting and improve speed and accuracy. Extensive empirical evaluation is conducted on two standard datasets such as COCO and PASCAL VOC 2007. Finally, comparative results and analyses are presented based on real-time.


2021 ◽  
Author(s):  
Wael Alnahari

Abstract In this paper, I proposed an iris recognition system by using deep learning via neural networks (CNN). Although CNN is used for machine learning, the recognition is achieved by building a non-trained CNN network with multiple layers. The main objective of the code the test pictures’ category (aka person name) with a high accuracy rate after having extracted enough features from training pictures of the same category which are obtained from a that I added to the code. I used IITD iris which included 10 iris pictures for 223 people.


2020 ◽  
Vol 12 (7) ◽  
pp. 1092
Author(s):  
David Browne ◽  
Michael Giering ◽  
Steven Prestwich

Scene classification is an important aspect of image/video understanding and segmentation. However, remote-sensing scene classification is a challenging image recognition task, partly due to the limited training data, which causes deep-learning Convolutional Neural Networks (CNNs) to overfit. Another difficulty is that images often have very different scales and orientation (viewing angle). Yet another is that the resulting networks may be very large, again making them prone to overfitting and unsuitable for deployment on memory- and energy-limited devices. We propose an efficient deep-learning approach to tackle these problems. We use transfer learning to compensate for the lack of data, and data augmentation to tackle varying scale and orientation. To reduce network size, we use a novel unsupervised learning approach based on k-means clustering, applied to all parts of the network: most network reduction methods use computationally expensive supervised learning methods, and apply only to the convolutional or fully connected layers, but not both. In experiments, we set new standards in classification accuracy on four remote-sensing and two scene-recognition image datasets.


Sign in / Sign up

Export Citation Format

Share Document