scholarly journals STUDYING OF THE CHANGE OF VEGETABLE COVER OF THE SOUTHERN SLOPE OF GREATER CAUCASUS ON THE BASIS OF SPACE IMAGES

Author(s):  
H. H. Asadov ◽  
V. M. Novruzov ◽  
P. M. Efendiyev ◽  
I. M. Nasibov ◽  
R. H. Khalilov ◽  
...  
2021 ◽  
pp. 118-126
Author(s):  
Oleksandr BOBROV ◽  
Sergii KLOCHKOV ◽  
Serhiy KAKARANZA ◽  
Oleksandr KAKARANZA ◽  
Yurii FEDORISHIN ◽  
...  

During 2017–2018 not far from Sewafeh town, Kono province (Republic of Sierra Leone), we identified a number of previously unknown manifestations of kimberlite magmatism in the form of a system of individual veins localized at the contact of the migmatite basement and Archean ultrabasic massifs, or in the immediate vicinity of ultramafic massifs, which is part of the rocks of the greenstone belt. The optimal sequence of conducting remote sensing studies, such as interpretation of space images of various resolution, neotectonic and geomorphological analysis, SRTM modeling, and then field geological and geophysical research have facilitated this discovery. According to drilling data, kimberlites in different spots of their occurrence (Punduru 1 area) are represented by subvolcanic phlogopite-olivine (with perovskite), and olivine varieties, as well as veins of numerous intensely metasomatic altered kimberlite breccias (Yomby area). Veins of subvolcanic kimberlites are concentrated in the contact part with ultramafic massifs of magmatic and lava (metakomatiite xenoliths) genesis. Kimberlites are the youngest vein formations in the area, crossing even vein pegmatites, the generation of which was provoked by the intrusion of ultramafic rocks in the basement migmatites (Cederholm effect). Kimberlites are present in the section of wells in the form of separate veins of complex morphology and thickness from a few centimeters to 45 cm. In well P1-2 at a depth of 92 m, these are represented by micro porphyry kimberlites of the basaltoid type with microlithic groundmass, altered by secondary metasomatic processes. Porphyry inclusions are represented by pseudomorphs of carbonate-serpentine composition after olivine and rare phlogopite flakes. Olivine crystals of the second-generation act as micro porphyry inclusions. The rock matrix is carbonate. Carbonate is represented by finely crystalline calcite, or replaced by dolomite. In addition to olivine, the groundmass contains relics or pseudomorphs after phlogopite, as well as magnetite, perovskite (it can be replaced by magnetite), secondary apatite. The kimberlites of the Bambawo area are represented by sub-volcanic porphyry basaltoid kimberlites, autolithic kimberlites and kimberlite xenotuff breccias. 


2021 ◽  
Vol 07 (02) ◽  
pp. 75-77
Author(s):  
Zeynəb Zəkəriyyə qızı Qurbanzadə ◽  

In the article touched such issues as anthropogenic changes in the landscapes of the south slope of the Greater Caucasus, ecological study of enviromental impact, landscape optimization. There are also suggestions for more efficient use of rapidly growing anthropogenically affected landscapes. Key words: anthropogenic changes, Greater Caucasus, south slope, optimization, landscape Azərbaycanın şimal-şərq hissələrini əhatə edən təbii iqlim şəraiti, heyvanat və bitki aləminə, turizm və istirahət üçün əvəzolunmaz məziyyətlərinə, həm də zəngin yeraltı sərvətlərinə görə respublikamızın nadir ərazilərindən biri olan Böyük Qafqazın cənub yamacı getdikcə daha da intensivləşən antropogen təsirlərə məruz qalan bir tədqiqat obyekti kimi nəzəri cəlb edir.


2021 ◽  
Vol 07 (02) ◽  
pp. 61-63
Author(s):  
Qüdrət Tərlan oğlu Məmmədli ◽  

According to the modern geodynamic concept of lithosphere pans, the geological structure of the Greater Caucasus in the system of geosynclinal and platform regions is very complex. This situation, along with different conditions for the geomorphological development of the area, led to the formation of a complex and diverse relief with different ridges, massifs, inland basins, river valleys and other small morphostructures and morphosculptures. Key words: Greater Caucasus, southern part of Greater Caucasus, southern slopes, mosfostructure, geomorphological analysis, relief forms


2013 ◽  
Vol 450 (1) ◽  
pp. 550-555 ◽  
Author(s):  
V. A. Lebedev ◽  
I. V. Chernyshev ◽  
O. Z. Dudauri ◽  
G. T. Vashakidze ◽  
Yu. V. Goltsman ◽  
...  

Baltica ◽  
2021 ◽  
pp. 185-202
Author(s):  
Irakli Javakhishvili ◽  
David Shengelia ◽  
Tamara Tsutsunava ◽  
Giorgi Chichinadze ◽  
Giorgi Beridze ◽  
...  

The Dizi Series is exposed within the Southern Slope zone of the Greater Caucasus, in the core of the Svaneti anticlinorium. It is mainly composed of terrigenous, volcanogenic and carbonate rocks faunistically dated from the Devonian to the Triassic inclusive. Regional and contact metamorphism of the Dizi Series rocks was studied. It is stated that the degree of regional metamorphism corresponds to the chlorite-sericite subfacies of the greenschist facies, occurring at a temperature of 300–350°C and a pressure of 1.5–2.3 kbar. As a result of the action of the Middle Jurassic intrusive rock bodies, the regionally metamorphosed rocks of the Dizi Series underwent contact metamorphism. Three zones of contact metamorphism were distinguished corresponding to albite-epidote-hornfels, andalusite-biotite-muscovite-chlorite-hornfels and andalusite-biotite-muscovite-hornfels subfacies. Contact metamorphism took place at a significantly higher temperature and lower pressure than the preceding regional metamorphism. The maximum temperature of the contact metamorphism reached ≈ 570°С, while pressure varied within the range of ≈ 0.3–0.8 kbar. The evolution of rock associations of regional and contact metamorphism of the Dizi Series was studied. The fields of facies and subfacies of regional and contact metamorphism are shown in the Ps-T diagram. Three age populations of zircons were identified using U-Pb LA-ICP-MS dating of the diorite-porphyrite intrusion in the Dizi Series: Zrn1 (ca. 2200 Ma) and Zrn2 (458 ± 29 Ma) that were captured by the diorite-porphyrite magma from the ancient magmatic and metamorphic rocks of the crystalline basement, and Zrn3 (166.5 ± 4.6 Ma) that corresponds to the age of diorite-porphyrite crystallization.


Sign in / Sign up

Export Citation Format

Share Document