scholarly journals Influence of accelerator energy parameters and silicon carbide microparticle sizes on the changes in magnetic field induction during their acceleration

Author(s):  
A. F. Ilyushchenko ◽  
V. I. Ovchinnikov

This article contains the microparticle accelerator scheme, the methods, and the results of practical study of magnetic field induction and electromagnetic radiation formed during explosion product ionization and energy accumulation during explosive charge detonation, as well as the influence of some process parameters on its change. The purpose of this work is to study the influence of accelerator energy parameters and silicon carbide microparticle sizes on the change in magnetic field induction during their acceleration. The influence of technological parameters on the electrodynamic properties of the ionization process of a complex chemical system, which is condensed EXPLOSIVES, was studied by the developed method based on the Hall effect with the use of the developed semiconductor Hall sensors and a special measuring complex. The average magnetic field induction value is 48 MT. The influence of the energy parameters of the accelerator (explosive charge mass), as well as of the size of microparticles introduced into the explosion products (PV) on the electrodynamic properties of the processes of ionization and acceleration of microparticles was determined by measuring and calculating magnetic field induction. Practical results were obtained and confirmed the particle size influence on the plasma state. With an increase in the particle size from 20 to 100 microns, the induction value increases to 50 MT and decreases sharply with a change in the size from 150 to 300 microns. The obtained dependences are the technological characteristics of the process of processing materials by high-speed flows of microparticles with the use of explosion energy, which can be adjusted to make the process manageable.

2019 ◽  
Vol 27 (4) ◽  
pp. 125-130
Author(s):  
O. Padun ◽  
Y. Kovalenko ◽  
B. Rassamakin ◽  
V. Ostapchuk ◽  
A. Pynchuk

The article under the heading "Developing and creation of ground testing simulator for orientation and stabilization system of PolyITAN nanosatellites" is devoted to the research of methods of developing of the specialized simulator for the nanosatellite orientation and stabilization system ground testing. This problem is showed on the example of simulator developed in the National Technical Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”. Ground testing of the orientation and stabilization system is critically important phase of the pre-flight preparation of the nanosatellite. In order to provide precise tests, the simulator described in this article was developed. Objective of the simulator is to create targeted magnetic field in assured volume, where flight of the nanosatellite is imitated, stabilization and orientation performances are tested. The introduction describes experience of the PolyITAN team in developing of nanosatellites, the tasks of the first two nanosatellites - PolyITAN-1 and PolyITAN-2 are revealed, the actuality of this research is highlighted. The main part reveals the order of development of the simulator for orientation and stabilization system ground testing in gradual and sector-wise way. First part shows construction decisions in the simulator’s configuration to ensure accomplishment of the simulator’s objective. Second part describes calculation of the number of turns and the diameter of the wire to provide required value of the modulus of the vector of magnetic field induction, which is created by the simulator. Next part is devoted to calculation of power required for power sources, increment of magnetic field induction as a function of the current increment is provided, what is very important for power source selection. Next part is a research of the uniformity sphere - working space of the simulator, which must provide enough volume for testing of the 3U nanosatellites of CubeSat format. Final part describes control system of the simulator.


2019 ◽  
Vol 31 (2) ◽  
pp. 243-252
Author(s):  
Evguenia V Korobko ◽  
Mikalai A Zhurauski ◽  
Buhe Bateer ◽  
Zoya A Novikova ◽  
Vladimir A Kuzmin

The results of experimental studies of strain kinetics of composite magnetically controlled materials in the creep mode with preliminary exposure and without exposure are described by the Burgers model with two elastic and two viscous parameters, which is a combination of viscoelastic Kelvin–Voigt and Maxwell models connected in series. The dependence of the model parameters on the magnetic field induction is determined. The values of elastic and viscous parameters increase with increasing magnetic field induction in the range up to 500 mT by one or two orders of magnitude. It was determined that the value of the viscous Maxwell parameter does not change after preliminary exposure in the field. The values of the other two elastic and viscous Kelvin–Voigt parameters increase with exposure in a magnetic field.


Sign in / Sign up

Export Citation Format

Share Document