maxwell models
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 12)

H-INDEX

14
(FIVE YEARS 2)

Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 540
Author(s):  
Abraham Kabutey ◽  
Čestmír Mizera ◽  
Oldřich Dajbych ◽  
Petr Hrabě ◽  
David Herák ◽  
...  

In the present study, a Box–Behnken design of response surface methodology (RSM) was employed to optimize the processing factors (force: 100, 150, and 200 kN; speed: 3, 5, and 7 mm/min; and temperature: 40, 60, and 80 °C) for extracting pumpkin seeds oil under uniaxial compression. The design generated 15 experiments including twelve combinations of factors and three replicates at the center point. The responses: oil yield (%), oil expression efficiency (%), and energy (J) were calculated, and the regression models determined were statistically analyzed and validated. The optimum factors combination: 200 kN, 4 mm/min and 80 °C predicted the oil yield of 20.48%, oil expression efficiency of 60.90%, and energy of 848.04 J. The relaxation time of 12 min at the optimum factors increased the oil efficiency to 64.53%. The lower oil point force was determined to be 57.32 kN for estimating the maximum oil output. The tangent curve and generalized Maxwell models adequately (R2 = 0.996) described the compression and relaxation processes of pumpkin seeds oil extraction. Peroxide value increased with temperatures. The study provides detailed information useful for processing different bulk oilseeds under uniaxial loading for optimizing the mechanical oil pressing in large-scale oil production.


Author(s):  
C. M. ROONEY ◽  
C. P. PLEASE ◽  
S. D. HOWISON

Heat transport in granular and porous media occurs through conduction in the solid and radiation through the voids. By exploiting the separation of length scales between the small typical particles or voids and the large size of whole region, the method of multiple scales can be applied. For a purely diffusive system, this yields a problem on the macroscale with an effective conductivity, deduced by solving a ‘cell problem’ on the microscale. Here, we apply the method when radiation and conduction are both present; however, care must be taken to correctly handle the integral nature of the radiative boundary condition. Again, an effective conductivity is found by solving a ‘cell problem’ which, because of the non-linearity of radiative transfer, to be solved for each temperature value. We also incorporate modifications to the basic theory of multiple scales in order to deal with the non-local nature of the radiative boundary condition. We derive the multiple scales formulation of the problem and report on numerical comparisons between the homogenised problem and direct solution of the problem. We also compare the effective conductivity to that derived using Maxwell models and effective medium theory.


2020 ◽  
Vol 12 (19) ◽  
pp. 7938
Author(s):  
Nguyen Ba Hung ◽  
Ocktaeck Lim

A model-based study is carried out based on a combination of mathematical and Maxwell models to develop a high-performance electric pressure regulator utilized for compressed-natural-gas-fueled vehicles. To reduce computational cost, a symmetric two-direction model of the electric pressure regulator is established in Maxwell software, in which its material properties and dimension parameters are obtained on the base of specifications of a real electric pressure regulator. The output of simulating in Maxwell is the electromagnetic force, which is significantly improved when changing core shape in the various dimensions ∆1, ∆2, and ∆3. The optimal electromagnetic force is utilized for the mathematical models as an input variable to simulate the operational characteristics of the electric pressure regulator such as displacement and response time of plunger. The operational characteristics of the electric pressure regulator are examined under the influences of key parameters, including inlet gas pressure, diameter of orifice, and spring stiffness. By optimizing these key parameters, the simulated results in this study show that an electric pressure regulator with high performance can be obtained.


2019 ◽  
Vol 31 (2) ◽  
pp. 243-252
Author(s):  
Evguenia V Korobko ◽  
Mikalai A Zhurauski ◽  
Buhe Bateer ◽  
Zoya A Novikova ◽  
Vladimir A Kuzmin

The results of experimental studies of strain kinetics of composite magnetically controlled materials in the creep mode with preliminary exposure and without exposure are described by the Burgers model with two elastic and two viscous parameters, which is a combination of viscoelastic Kelvin–Voigt and Maxwell models connected in series. The dependence of the model parameters on the magnetic field induction is determined. The values of elastic and viscous parameters increase with increasing magnetic field induction in the range up to 500 mT by one or two orders of magnitude. It was determined that the value of the viscous Maxwell parameter does not change after preliminary exposure in the field. The values of the other two elastic and viscous Kelvin–Voigt parameters increase with exposure in a magnetic field.


PAMM ◽  
2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Manuel Wieland ◽  
Walter Arne ◽  
Nicole Marheineke ◽  
Raimund Wegener

2019 ◽  
Vol 35 (6) ◽  
pp. 1191-1209 ◽  
Author(s):  
A. Serra-Aguila ◽  
J. M. Puigoriol-Forcada ◽  
G. Reyes ◽  
J. Menacho

Author(s):  
Do Quoc Tuan

Abstract: We will present main results of our recent investigations on the validity of the cosmic no-hair conjecture proposed by Hawking and his colleagues in some conformal-violating Maxwell models, in which a scalar field or its kinetic term is non-trivially coupled to the electromagnetic field. In particular, we will show that the studied models really admit the Bianchi type I metrics, which are homogeneous but anisotropic space time, as their stable cosmological solutions. Hence, these models turn out to be counterexamples to the cosmic no-hair conjecture. Keywords: Cosmic no-hair conjecture, cosmic inflation, Bianchi type I space time, Maxwell theory.


Sign in / Sign up

Export Citation Format

Share Document