scholarly journals New approaches for integrated and cost-effective malaria vector control

2018 ◽  
Vol 3 (1) ◽  
pp. 6-10 ◽  
Author(s):  
Peter Dambach
2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Guofa Zhou ◽  
Eugenia Lo ◽  
Andrew K. Githeko ◽  
Yaw A. Afrane ◽  
Guiyun Yan

AbstractThe issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Emmanuel Chanda ◽  
Victor Munyongwe Mukonka ◽  
David Mthembu ◽  
Mulakwa Kamuliwo ◽  
Sarel Coetzer ◽  
...  

Geographic information systems (GISs) with emerging technologies are being harnessed for studying spatial patterns in vector-borne diseases to reduce transmission. To implement effective vector control, increased knowledge on interactions of epidemiological and entomological malaria transmission determinants in the assessment of impact of interventions is critical. This requires availability of relevant spatial and attribute data to support malaria surveillance, monitoring, and evaluation. Monitoring the impact of vector control through a GIS-based decision support (DSS) has revealed spatial relative change in prevalence of infection and vector susceptibility to insecticides and has enabled measurement of spatial heterogeneity of trend or impact. The revealed trends and interrelationships have allowed the identification of areas with reduced parasitaemia and increased insecticide resistance thus demonstrating the impact of resistance on vector control. The GIS-based DSS provides opportunity for rational policy formulation and cost-effective utilization of limited resources for enhanced malaria vector control.


2003 ◽  
Vol 9 (4) ◽  
pp. 627-636 ◽  
Author(s):  
S. D. Parvez ◽  
S. S. Al Wahaibi

A field study was carried out over 27 weeks in the south Batinah region of Oman to assess the efficiency and cost-effectiveness of different strategies for vector control of malaria. Three larviciding strategies for Anopheles spp. were applied to intervention areas and compared with a control area, with over 2000 breeding sites monitored for 6 months. The normal method of spraying 1 ppm temephos larvicide fortnightly was found to be less efficient and less cost-effective than using 0.5 ppm temephos applied weekly. A third, more environmentally favourable method, to search for vector larvae and treat only those breeding places, was more effective than fortnightly spraying but less effective than the weekly half dose and was the most expensive strategy


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Mary Nyangi ◽  
Elizabeth Kigondu ◽  
Beatrice Irungu ◽  
Margaret Nganga ◽  
Anthony Gachanja ◽  
...  

Abstract Background Vector control is an essential component in prevention and control of malaria in malaria endemic areas. Insecticide treated nets is one of the standard tools recommended for malaria vector control. The objective of the study was to determine physical integrity and insecticidal potency of long-lasting insecticidal nets (LLINs) used in control of malaria vector in Kirinyaga County, Kenya. Method The study targeted households in an area which had received LLINs during mass net distribution in 2016 from Ministry of Health. A total of 420 households were sampled using systematic sampling method, where the household heads consented to participate in the study. A semi-structured questionnaire was administered to assess care and use while physical examination was used to determine integrity. Chemical concentration was determined by gas chromatography mass spectroscopy (GC-MS). Data analysis was done using Statistical Package for Social Sciences (SPSS) version 19. Results After 18 months of use, 96.9% (95% CI: 95.2–98.6%) of the distributed nets were still available. Regarding net utilization, 94.1% of household heads reported sleeping under an LLIN the previous night. After physical examination, 49.9% (95% CI: 43–52.8%) of the bed nets had at least one hole. The median number of holes of any size was 2[interquartile range (IQR) 1–4], and most holes were located on the lower part of the nets, [median 3 (IQR 2–5)]. Only 15% of the nets with holes had been repaired. The median concentration for α-cypermethrin was 7.15 mg/m2 (IQR 4.25–15.31) and 0.00 mg/g (IQR 0.00–1.99) for permethrin. Based on pHI, Chi-square test varied significantly with the manufacturer (X (6, N = 389) = 29.14, p = 0.04). There was no significant difference between nets with different number of washes (X2(2) = 4.55, p = 0.103). Conclusion More than three-quarters of the nets supplied had survived and insecticidal potency was adequate in vector control. Standard procedure for field evaluation of surface insecticidal content available to a mosquito after landing on a net to rest is recommended.


Sign in / Sign up

Export Citation Format

Share Document