scholarly journals Production and characterization of biochemical properties of L-Asparaginase by indigenous yeast isolated from soil of Iran

2020 ◽  
Vol 22 (1) ◽  
pp. 178-184
Author(s):  
Hoda Nouri ◽  
Hamid Moghimi ◽  
Ali khaleghian ◽  
◽  
◽  
...  
2016 ◽  
Vol 3 (1) ◽  
pp. 43-48 ◽  
Author(s):  
V. Patyka ◽  
L. Butsenko ◽  
L. Pasichnyk

Aim. To validate the suitability of commercial API 20E test-system (bioMerieux) for the identifi cation and characterization of facultative gram-negative phytopathogenic bacterial isolates. Methods. Conventional mi- crobiological methods, API 20E test-system (bioMerieux) according to the manufacturer’s instructions. Re- sults. The identifi cation results for Erwinia amylovora, Pectobacterium carotovorum and Pantoea agglome- rans isolates were derived from the conventional and API 20E test systems, which, were in line with the literature data for these species. The API 20E test-system showed high suitability for P. agglomerans isolates identifi cation. Although not all the species of facultatively anaerobic phytopathogenic bacteria may be identi- fi ed using API 20E test-system, its application will surely allow obtaining reliable data about their physiologi- cal and biochemical properties, valuable for identifi cation of bacteria, in the course of 24 h. Conclusions. The results of tests, obtained for investigated species while using API 20E test-system, and those of conventional microbiological methods coincided. The application of API 20E test-system (bioMerieux) ensures fast obtain- ing of important data, which may be used to identify phytopathogenic bacteria of Erwinia, Pectobacterium, Pantoea genera.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Peixian Bai ◽  
Liyuan Wang ◽  
Kang Wei ◽  
Li Ruan ◽  
Liyun Wu ◽  
...  

Abstract Background Alanine decarboxylase (AlaDC), specifically present in tea plants, is crucial for theanine biosynthesis. Serine decarboxylase (SDC), found in many plants, is a protein most closely related to AlaDC. To investigate whether the new gene AlaDC originate from gene SDC and to determine the biochemical properties of the two proteins from Camellia sinensis, the sequences of CsAlaDC and CsSDC were analyzed and the two proteins were over-expressed, purified, and characterized. Results The results showed that exon-intron structures of AlaDC and SDC were quite similar and the protein sequences, encoded by the two genes, shared a high similarity of 85.1%, revealing that new gene AlaDC originated from SDC by gene duplication. CsAlaDC and CsSDC catalyzed the decarboxylation of alanine and serine, respectively. CsAlaDC and CsSDC exhibited the optimal activities at 45 °C (pH 8.0) and 40 °C (pH 7.0), respectively. CsAlaDC was stable under 30 °C (pH 7.0) and CsSDC was stable under 40 °C (pH 6.0–8.0). The activities of the two enzymes were greatly enhanced by the presence of pyridoxal-5′-phosphate. The specific activity of CsSDC (30,488 IU/mg) was 8.8-fold higher than that of CsAlaDC (3467 IU/mg). Conclusions Comparing to CsAlaDC, its ancestral enzyme CsSDC exhibited a higher specific activity and a better thermal and pH stability, indicating that CsSDC acquired the optimized function after a longer evolutionary period. The biochemical properties of CsAlaDC might offer reference for theanine industrial production.


Cancers ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2904
Author(s):  
Margot Gautier ◽  
Cécile Thirant ◽  
Olivier Delattre ◽  
Isabelle Janoueix-Lerosey

Neuroblastoma, a pediatric cancer of the peripheral sympathetic nervous system, is characterized by an important clinical heterogeneity, and high-risk tumors are associated with a poor overall survival. Neuroblastoma cells may present with diverse morphological and biochemical properties in vitro, and seminal observations suggested that interconversion between two phenotypes called N-type and S-type may occur. In 2017, two main studies provided novel insights into these subtypes through the characterization of the transcriptomic and epigenetic landscapes of a panel of neuroblastoma cell lines. In this review, we focus on the available data that define neuroblastoma cell identity and propose to use the term noradrenergic (NOR) and mesenchymal (MES) to refer to these identities. We also address the question of transdifferentiation between both states and suggest that the plasticity between the NOR identity and the MES identity defines a noradrenergic-to-mesenchymal transition, reminiscent of but different from the well-established epithelial-to-mesenchymal transition.


1985 ◽  
Vol 22 (4) ◽  
pp. 375-386 ◽  
Author(s):  
H. C. Wimberly ◽  
D. O. Slauson ◽  
N. R. Neilsen

Antigen-specific challenge of equine leukocytes induced the non-lytic release of a platelet-activating factor in vitro. The equine platelet-activating factor stimulated the release of serotonin from equine platelets in a dose-responsive manner, independent of the presence of cyclo-oxygenase pathway inhibitors such as indomethacin. Rabbit platelets were also responsive to equine platelet-activating factor. The release of equine platelet-activating factor was a rapid reaction with near maximal secretion taking place in 30 seconds. Addition of equine platelet-activating factor to washed equine platelets stimulated platelet aggregation which could not be inhibited by the presence of aspirin or indomethacin. Platelets preincubated with equine platelet-activating factor became specifically desensitized to equine platelet-activating factor while remaining responsive to other platelet stimuli such as collagen and epinephrine. The following biochemical properties of equine platelet-activating factor are identical to those properties of 1-0-alkyl-2-acetyl-sn-glyceryl-3-phosphorylcholine (AGEPC): stability upon exposure to air and acid; loss of functional activity after basecatalyzed methanolysis with subsequent acylation that returned all functional activity; and identical relative mobilities on silica gel G plates developed with chloroform:methanol:water (65:35:6, volume/volume). The combined functional and biochemical characteristics of equine platelet-activating factor strongly suggest identity between this naturally occurring, immunologically derived equine factor and AGEPC.


2004 ◽  
Vol 48 (4) ◽  
pp. 1374-1378 ◽  
Author(s):  
Alejandro Beceiro ◽  
Lourdes Dominguez ◽  
Anna Ribera ◽  
Jordi Vila ◽  
Francisca Molina ◽  
...  

ABSTRACT A presumptive chromosomal cephalosporinase (pI, 9.0) from a clinical strain of Acinetobacter genomic species 3 (AG3) is reported. The nucleotide sequence of this β-lactamase shows for the first time the gene encoding an AmpC enzyme in AG3. In addition, the biochemical properties of the novel AG3 AmpC β-lactamase are reported


2007 ◽  
Vol 405 (3) ◽  
pp. 455-463 ◽  
Author(s):  
Alain Doucet ◽  
Dominique Bouchard ◽  
Marie France Janelle ◽  
Audrey Bellemare ◽  
Stéphane Gagné ◽  
...  

Pre-elafin is a tight-binding inhibitor of neutrophil elastase and myeloblastin; two enzymes thought to contribute to tissue damage in lung emphysema. Previous studies have established that pre-elafin is also an effective anti-inflammatory molecule. However, it is not clear whether both functions are linked to the antipeptidase activity of pre-elafin. As a first step toward elucidating the structure/function relationship of this protein, we describe here the construction and characterization of pre-elafin variants with attenuated antipeptidase potential. In these mutants, the P1′ methionine residue of the inhibitory loop is replaced by either a lysine (pre-elafinM25K) or a glycine (pre-elafinM25G) residue. Both mutated variants are stable and display biochemical properties undistinguishable from WT (wild-type) pre-elafin. However, compared with WT pre-elafin, their inhibitory constants are increased by one to four orders of magnitude toward neutrophil elastase, myeloblastin and pancreatic elastase, depending on the variants and enzymes tested. As suggested by molecular modelling, this attenuated inhibitory potential correlates with decreased van der Waals interactions between the variants and the enzymes S1′ subsite. In elastase-induced experimental emphysema in mice, only WT pre-elafin protected against tissue destruction, as assessed by the relative airspace enlargement measured using lung histopathological sections. Pre-elafin and both mutants prevented transient neutrophil alveolitis. However, even the modestly affected pre-elafinM25K mutant, as assayed in vitro with small synthetic substrates, was a poor inhibitor of the neutrophil elastase and myeloblastin elastolytic activity measured with insoluble elastin. We therefore conclude that full antipeptidase activity of pre-elafin is essential to protect against lung tissue lesions in this experimental model.


2018 ◽  
Author(s):  
Krithika Rajagopalan ◽  
Jonathan Dworkin

AbstractIn bacteria, signaling phosphorylation is thought to occur primarily on His and Asp residues. However, phosphoproteomic surveys in phylogenetically diverse bacteria over the past decade have identified numerous proteins that are phosphorylated on Ser and/or Thr residues. Consistently, genes encoding Ser/Thr kinases are present in many bacterial genomes such asE. coli,which encodes at least three Ser/Thr kinases. Since Ser/Thr phosphorylation is a stable modification, a dedicated phosphatase is necessary to allow reversible regulation. Ser/Thr phosphatases belonging to several conserved families are found in bacteria. One family of particular interest are Ser/Thr phosphatases which have extensive sequence and structural homology to eukaryotic Ser/Thr PP2C phosphatases. These proteins, called eSTPs (eukaryotic-like Ser/Thr phosphatases), have been identified in a number of bacteria, but not inE. coli.Here, we describe a previously unknown eSTP encoded by anE. coliORF,yegK,and characterize its biochemical properties including its kinetics, substrate specificity and sensitivity to known phosphatase inhibitors. We investigate differences in the activity of this protein in closely relatedE. colistrains. Finally, we demonstrate that this eSTP acts to dephosphorylate a novel Ser/Thr kinase which is encoded in the same operon.ImportanceRegulatory protein phosphorylation is a conserved mechanism of signaling in all biological systems. Recent phosphoproteomic analyses of phylogenetically diverse bacteria including the model Gram-negative bacteriumE. colidemonstrate that many proteins are phosphorylated on serine or threonine residues. In contrast to phosphorylation on histidine or aspartate residues, phosphorylation of serine and threonine residues is stable and requires the action of a partner Ser/Thr phosphatase to remove the modification. Although a number of Ser/Thr kinases have been reported inE. coli, no partner Ser/Thrphosphatases have been identified. Here, we biochemically characterize a novel Ser/Thr phosphatase that acts to dephosphorylate a Ser/Thr kinase that is encoded in the same operon.


2008 ◽  
Vol 57 (2) ◽  
pp. 312-319 ◽  
Author(s):  
Bethany Swencki-Underwood ◽  
Juliane K. Mills ◽  
Joe Vennarini ◽  
Ken Boakye ◽  
Jinquan Luo ◽  
...  

1992 ◽  
Vol 284 (3) ◽  
pp. 749-754 ◽  
Author(s):  
G McAllister ◽  
P Whiting ◽  
E A Hammond ◽  
M R Knowles ◽  
J R Atack ◽  
...  

Inositol monophosphatase (EC 3.1.3.25) is a key enzyme in the phosphoinositide cell-signalling system. Its role is to provide inositol required for the resynthesis of phosphatidylinositol and polyphosphoinositides. It is the probable pharmacological target for lithium action in brain. Using probes derived from the bovine inositol monophosphatase cDNA we have isolated cDNA clones encoding the human and rat brain enzymes. The enzyme is highly conserved in all three species (79% identical). The coding region of the human cDNA was inserted into a bacterial expression vector. The expressed recombinant enzyme was purified and its biochemical properties examined. The human enzyme is very similar to the bovine enzyme.


Sign in / Sign up

Export Citation Format

Share Document