scholarly journals An Experimental Investigation of Mobile Network Traffic Prediction Accuracy

2016 ◽  
Vol 3 (1) ◽  
pp. 1-16 ◽  
Author(s):  
Ali Yadavar Nikravesh ◽  
◽  
Samuel A. Ajila ◽  
Chung-Horng Lung ◽  
Wayne Ding ◽  
...  

Network traffic modeling and forecasting is the basis of network management and security warning. According to the characteristics of the nonlinear network flows, chaos, polygon, etc., in order to improve the prediction accuracy of network traffic, and puts forward the a cuckoo search cable calculation method and BP neural network by network traffic prediction model, BP neural network is used by the network of the learning sample book training, die quasi cloth Valley bird found nest eggs to find the optimal model parameters and the mining network flow number in simulation experiment according to measure the trial model of can. Simulation results show that compared with the reference model, CS-BPNN improves the prediction accuracy of network traffic, network traffic trends are described more accurately, provides a new research tool with network traffic prediction.


2011 ◽  
Vol 31 (4) ◽  
pp. 901-903
Author(s):  
Yong SUN ◽  
Guang-wei BAI ◽  
Lu ZHAO

Author(s):  
Qingtian Zeng ◽  
Qiang Sun ◽  
Geng Chen ◽  
Hua Duan

AbstractWireless cellular traffic prediction is a critical issue for researchers and practitioners in the 5G/B5G field. However, it is very challenging since the wireless cellular traffic usually shows high nonlinearities and complex patterns. Most existing wireless cellular traffic prediction methods lack the abilities of modeling the dynamic spatial–temporal correlations of wireless cellular traffic data, thus cannot yield satisfactory prediction results. In order to improve the accuracy of 5G/B5G cellular network traffic prediction, an attention-based multi-component spatiotemporal cross-domain neural network model (att-MCSTCNet) is proposed, which uses Conv-LSTM or Conv-GRU for neighbor data, daily cycle data, and weekly cycle data modeling, and then assigns different weights to the three kinds of feature data through the attention layer, improves their feature extraction ability, and suppresses the feature information that interferes with the prediction time. Finally, the model is combined with timestamp feature embedding, multiple cross-domain data fusion, and jointly with other models to assist the model in traffic prediction. Experimental results show that compared with the existing models, the prediction performance of the proposed model is better. Among them, the RMSE performance of the att-MCSTCNet (Conv-LSTM) model on Sms, Call, and Internet datasets is improved by 13.70 ~ 54.96%, 10.50 ~ 28.15%, and 35.85 ~ 100.23%, respectively, compared with other existing models. The RMSE performance of the att-MCSTCNet (Conv-GRU) model on Sms, Call, and Internet datasets is about 14.56 ~ 55.82%, 12.24 ~ 29.89%, and 38.79 ~ 103.17% higher than other existing models, respectively.


2021 ◽  
Vol 1864 (1) ◽  
pp. 012099
Author(s):  
T. Tatarnikova ◽  
B. Sovetov ◽  
V. Chehanovsky

Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1578
Author(s):  
Daniel Szostak ◽  
Adam Włodarczyk ◽  
Krzysztof Walkowiak

Rapid growth of network traffic causes the need for the development of new network technologies. Artificial intelligence provides suitable tools to improve currently used network optimization methods. In this paper, we propose a procedure for network traffic prediction. Based on optical networks’ (and other network technologies) characteristics, we focus on the prediction of fixed bitrate levels called traffic levels. We develop and evaluate two approaches based on different supervised machine learning (ML) methods—classification and regression. We examine four different ML models with various selected features. The tested datasets are based on real traffic patterns provided by the Seattle Internet Exchange Point (SIX). Obtained results are analyzed using a new quality metric, which allows researchers to find the best forecasting algorithm in terms of network resources usage and operational costs. Our research shows that regression provides better results than classification in case of all analyzed datasets. Additionally, the final choice of the most appropriate ML algorithm and model should depend on the network operator expectations.


Sign in / Sign up

Export Citation Format

Share Document