scholarly journals Efek gaya tekan pembuatan hibrid komposit berpenguat SiCw/Al2O3 dengan wetting agent Mg terhadap sifat fisik dan mekanik

2021 ◽  
Vol 11 (1) ◽  
pp. 23
Author(s):  
K. Suarsana ◽  
N.P.G. Suardana ◽  
D.N.K.P. Negara ◽  
P.W. Sunu ◽  
A.A.A. Triadi
Keyword(s):  
1996 ◽  
Vol 36 (3) ◽  
pp. 373 ◽  
Author(s):  
KA Seaton ◽  
DC Joyce

In postharvest dipping treatment of Geraldton waxflower (Chamelaucium uncinatum), 13 insecticides tested at recommended application rates caused no visual injury, but some reduced vase life. Flowers of cv. Purple Pride were more sensitive to insecticides than leaves. There was no loss of vase life of flowers following dipping in chlorpyrifos, dimethoate or permethrin. Following dipping in deltamethrin, carbaryl, dichlorvos, cypermethrin, endosulfan or fenvalerate there was 31-49% loss of vase life. No loss of vase life was observed for cv. Alba, after dipping in carbaryl, fenvalerate or dimethoate. Insecticide dips containing wetting agent and a fungicide (e.g. a combination of deltamenthrin, Aqua and benomyl) was a suitable dip for Geraldton waxflower. Wetting agents varied in their effect on vase life. Aqua shortened vase life less than Agral, and D-CTrate less than D-C-Tron. Stems rapidly lost weight when held out of water following dipping, and vase life was reduced when ambient temperatures were above 30�C or drying times exceeded 60 min. It was concluded that flowers should be kept cool and well hydrated following dipping treatment.


2009 ◽  
Vol 24 (1) ◽  
pp. 43-49 ◽  
Author(s):  
Slavica Vukovic ◽  
Dusanka Indjic ◽  
Vojislava Bursic ◽  
Dragana Sunjka ◽  
Mila Grahovac

Simultaneous occurrence of different harmful species in agricultural practice necessitates that different plant protection chemicals be applied at the same time (tank mix). Mix components differ in purpose, mode of action and/or formulation, while addition of no pesticide components (complex fertilizers, adjuvant and wetting agents) is widely practiced today. However, data concerning the effects of water quality used for preparation of working liquids on the biological effects of pesticides is still scarce. Therefore, the objective of this study was to determine insecticidal effects as depending on components used in mixes and water hardness. The effects of mixtures of thiametoxam (Actara 25-WG 0,07kg/ha) with azoxystrobin (Quadris 0.75 l/ha), mancozeb (Dithane M-70 2.5 kg/ha), a complex fertilizer (Mortonijc plus 3 kg/ha) and a wetting agent (Silwet L-77), depending on the components and water hardness (slightly hard (15.4 d?) - tap water from Novi Sad, and very hard (34.7 d?) - well water from Adica, a Novi Sad suburb), were determined in a bioassay based on adult mortality rate of the first generation of Colorado potato beetle (Leptinotarsa decemlineata Say). The mixtures were applied by a flooding method. The trial was set up to include four replications. Insecticidal effects were determined 24 h and 48 h after exposure. Thiametoxam effectiveness 24 h and 48 h after application in slightly hard water was 100% when the insecticide was applied alone and in double and triple mixes with the fungicides, complex fertilizer and wetting agent, showing no dependency on mix components. The tested adult population of Colorado potato beetle demonstrated high susceptibility to thiametoxam, while the other components had no impact in slightly hard water. In very hard water, 24 h after application, the insecticidal effect had the same level of significance to thiametoxam in double and triple mixes, with an exception of thiametoxam+mancozeb+Mortonijc plus and thiametoxam+mancozeb+wetting agent combinations, which showed significantly lower efficacy. After 48 h, substantially lower effectiveness, in comparison with the sole insecticide and other combinations, was only observed in thiametoksam+mancozeb+Mortonjic plus combination. Significantly lower efficacy of that combination is probably due to an incompatibility of the macozeb preparation and the complex fertilizer containing boron (B), which was evidenced only in very hard water.


Author(s):  
Ling Zhang ◽  
Zhi Zhang ◽  
Pengli Zhu ◽  
Kai Zhang ◽  
Xianzhu Fu ◽  
...  
Keyword(s):  

2011 ◽  
Vol 27 (4) ◽  
pp. 423-432 ◽  
Author(s):  
Andrea Weeks ◽  
Doerte Luensmann ◽  
Adrienne Boone ◽  
Lyndon Jones ◽  
Heather Sheardown

1999 ◽  
Vol 2 (3) ◽  
pp. 867-868
Author(s):  
A. Tanveer . ◽  
M. Ayub . ◽  
R. Ahmad . ◽  
A. Ali .
Keyword(s):  

2020 ◽  
Vol 12 (47) ◽  
pp. 52678-52690
Author(s):  
Johannes Küffner ◽  
Tina Wahl ◽  
Moritz Schultes ◽  
Jonas Hanisch ◽  
Julia Zillner ◽  
...  

1995 ◽  
Vol 20 (1) ◽  
pp. 349-349
Author(s):  
J. F. Brunner ◽  
M. D. Doerr ◽  
L. O. Smith

Abstract Beauveria bassiana (Naturalis-L), two B. thuringiensis products (Dipel and Troy Bt), and a feeding stimulant (Konsume) combined with a B. thuringiensis product were evaluated using a leaf-dip bioassay method for their effect on PLR and OBLR larvae. Treatments were prepared by diluting the appropriate amt of product (see table) in 500 ml water in a glass beaker. The Konsume treatments received a constant 1X rate of Dipel and 4X-0.25X rates of Konsume. A small amt (about 2 ml) of wetting agent, X-77®, was added to each treatment. An untreated control was prepared using water plus the wetting agent only. Untreated apple leaves were collected from ‘Red Delicious’ trees at the WSU Tree Fruit Research and Extension Center, Wenatchee. Leaves were dipped, then allowed to dry. Two punches (2.3 cm diameter) were taken from each leaf. Four punches were placed in a petri dish (Falcon 1006, 50 × 9 mm). Petri dishes were chosen randomly, and five 1- to 2-d-old leafroller larvae were placed on the leaf disks. The petri dish lid was put in place and dishes were placed inside a food storage container and kept at 75°F (± 2°F) constant temperature and a photoperiod of 16:8 (L:D) h. Petri dishes were examined after 7 d and larval survival recorded. Ten dishes were used for each treatment (50 larvae per treatment).


2019 ◽  
Vol 45 (3) ◽  
pp. 164-170 ◽  
Author(s):  
Manal M. Gabriel ◽  
Cindy McAnally ◽  
John Bartell ◽  
Rhonda Walters ◽  
Linda Clark ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document