scholarly journals Analisis Kinerja Routing Protokol AODV pada Jaringan VANET (Studi Kasus : Kecamatan Cakranegara)

Author(s):  
Muhamad Zaelani Syahrir Ramadhan ◽  
I Wayan Agus Arimbawa ◽  
Moh Ali Albar

Vehicular Ad-hoc Network is the concept of a subset of Mobile Ad-Hoc Networks (MANET) where vehicles act as nodes on the network. Protocol routing is very influential on the performance of the network to deal with challenges related to the rapidly changing network topology. This study analyze the routing performance of the AODV protocol on vanet networks in the district of Cakranegara by analyzing performance results using end to end delay parameters, packet delivery ratio (PDR), throughput, and routing overhead. The average Maximum value at end to end delay is 940.577 ms while the minimum value is 50,065 ms, and the average speed value decreases delay at speed 50 to 30 km / h by 78,314 ms and from 30 to 10 km / hour decreased by 102,827 ms. The maximum average value in the packet delivery ratio is 84.75% while the minimum value is 55.33%, and the average speed value decreases the ratio at the speed of 50 to 30 km / hour by 7.26% and from 30 to 10 km / h has increased by 10.39%. The average maximum value at throughput is 69,553 Kbps while the minimum value is 10.06 Kbps, and the average speed value decreases throughput at speeds of 50 to 30 km / h by 1,065 Kbps and from 30 to 10 km / h decreases amounting to 0.658 Kbps. The average Maximum value on routing overhead is 37,311 bytes while the minimum value is 7,439 bytes, and the average speed value increases at a speed of 50 to 30 km / hour by 1,321 Bytes and from 30 to 10 km / hour decreases by 5,453 Bytes. Key words: AODV, VANET, Routing Protocols, SUMO, NS2.

2021 ◽  
pp. 2150004
Author(s):  
ANKUR GOYAL ◽  
VIVEK KUMAR SHARMA ◽  
SANDEEP KUMAR ◽  
RAMESH CHANDRA POONIA

A MANET is a category of ad hoc protocol that could vary positions and track itself on the flutter. It utilizes wireless connections that are attached to several networks. They include wirelessly in a self-configured, self-healing network while not having permanent communication linked in a collection of mobile networks. The network topology of nodes typically varies in MANET, and nodes are free to stir errantly and independently as a router as they accelerate traffic to more nodes within the network. Ad hoc on-demand distance vector (AODV) was employed for node selection to attain the shortest path strategy in existing techniques. In the proposed system, the hybrid AODV (HAODV) technique incorporates the MFR (Most Forward within Radius) technique to detect the shortest path routing algorithm. The MFR method was deployed for selecting the neighbor node, while HAODV was deployed to find the shortest path. To find the shortest path based on the updating equation, the Firefly algorithm is also implemented into the Hybrid AODV. The proposed work’s performance is calculated by different network parameters like the end to end delay, average routing overhead, throughput, and packet delivery ratio. After comparing AODV and DSR algorithms, the proposed algorithm (HAODV) shows improvement in packet delivery ratio, end-to-end delay, Routing overhead, and throughput.


2019 ◽  
Vol 1 (1) ◽  
pp. 77-85
Author(s):  
Yunia Puspita Wulandari ◽  
Andy Hidayat Jatmika ◽  
Fitri Bimantoro

Mobile Ad-Hoc Network (MANET) is a development of the Ad-Hoc Network, where the nodes of this network have dynamic mobility. There are several types of routing protocols in MANET, one of which is AOMDV. Route discovery on the AOMDV routing protocol is done by calculating the distance based on the number of hops. If the number of hops increased, it may cause a considerable delay and a decrease in throughput. This study compares the performance of the AOMDV routing protocol with the Path Aware-AOMDV (PA-AOMDV) routing protocol. PA-AOMDV routing protocol is obtained through modifications to the performance of the AOMDV protocol with the Path Aware SHORT algorithm. The Path Aware SHORT algorithm is a method to reduce the number of hops. SHORT improves routing optimization by monitoring routes and optimizing these routes that have better paths. The performance of both protocols will be seen based on four parameters, namely throughput, average end-to-end delay, packet delivery ratio, and routing overhead. Result shows that the throughput increased for 50 nodes is 61,84% and for 100 nodes is 45,2%, average end-to-end delay decreased for 50 nodes is 0,066% and for 100 nodes 0,12%, packet delivery ratio increased for 50 nodes is 60,87% and for 100 nodes 82,02%, and routing overhead decreased for 50 nodes is 67,07% and 100 nodes 45,36%.


Author(s):  
Irfan Ahmad ◽  
Fahad Masood ◽  
Arbab Wajid Ullah Khan

In Mobile Ad hoc Networks (MANET) nodes often change their location independently where neither fixed nor centralized infrastructure is present. Nodes communicate with each other directly or via intermediate nodes. The advantages of the MANET layout lead to self-structure and compatibility to most important functions such as traffic distribution and load balancing. Whenever the host moves rapidly in the network the topology becomes updated due to which the structure of MANET varies accordingly. In the literature, different routing protocols have been studied and compared by researchers. Still, there are queries regarding the performance of these protocols under different scenarios. MANETs are not based on a predesigned structure. In this paper, the performance assessment of the Quality of Services (QoS) for different protocols such as Ad hoc On-Demand Distance Vector (AODV), Temporally Ordered Routing Algorithm (TORA) and Zone Routing Protocol (ZRP) in the existence of the various number of communicating nodes is studied. The performance matrices throughput, end – to – end delay and packet delivery ratio are considered for simulations. Ns 2.35 simulator is used for carrying out these simulations. Results are compared for AODV, TORA, and ZRP routing protocols. The results show that AODV and TORA perform well in end – to – end delay as compared to zone routing protocol. Zone routing protocol performs well in packet delivery ratio and throughput as compared to both the other protocols.


2014 ◽  
Vol 989-994 ◽  
pp. 4633-4636
Author(s):  
Xiao Long Tan ◽  
Jia Zhou ◽  
Wen Bin Wang

In recent years,the ad hoc network has been paid extensive attention due to its characteristics of non-center and self-organization.Firstly this paper introduces three typical routing protocols AODV,DSDV,DSR,and the principles of them; then,adopts the NS2 simulation platform to simulate the performance of end-to-end delay,routing overhead and packet delivery ratio by changing the number of nodes and the paused time of nodes.Finally,by comparing the simulating results, the comparison conclusion is provided.


2012 ◽  
Vol 241-244 ◽  
pp. 2284-2289 ◽  
Author(s):  
Juan Li ◽  
Xiao Lin Zhang ◽  
Jun Hai Bao ◽  
Guo Lei Geng

Based on the traditional DSR Protocols have obvious drawbacks such as low packet delivery rate and high routing overhead in the signal intensive UAV network. This paper introduces an improved DSR protocol(Restrict-DSR). The new DSR protocol can save the space of node routing memory and reduce the routing overhead by limiting the maximum hop count of route request. Simulation results by NS2 show that the RE-DSR has improved the packet delivery ratio and decreased the average of packet end-to-end delay and routing overhead comparing with the conventional DSR Protocols in the signal intensive UAV network.


2015 ◽  
Vol 738-739 ◽  
pp. 1115-1118
Author(s):  
Li Cui Zhang ◽  
Xiao Nan Zhu ◽  
Zhi Gang Wang ◽  
Guang Hui Han

Considering the shortcoming of the traditional Greedy Perimeter Stateless Routing Protocol in the Vehicular Ad hoc Networks ,this paper focuses on an improved GPSR protocol based on the density of vehicle flow .This new scheme includes macro-directing algorithm , micro-forwarding strategy and the maintenance of the neighbor list.The simulation result shows that compared with the traditional GPSR protocol, the new GPSR protocol improves data packet delivery ratio, but its average end-to-end delay is slightly larger than before.


SISTEMASI ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 215
Author(s):  
Fajar Baihaqy

MANET merupakan tipe jaringan khusus yang mampu melibatkan banyak orang atau peralatan komunikasi tanpa ketergantungan terhadap suatu infrastruktur. AODV dan DSDV merupakan contoh routing protocol yang efisien untuk jaringan Ad Hoc pada tipe routing protocol masing-masing. AODV untuk tipe routing protocol reactive dan DSDV untuk tipe routing protocol proactive. Setiap routing protocol tentunya memiliki kemampuan masing-masing, sehingga Quality of Service (QoS) untuk setiap routing protocol akan berbeda juga. Dalam penelitian melakukan analisis QoS pada routing protocol AODV dan DSDV dengan parameter yang di uji adalah Packet Delivery Ratio, Throughput, dan end-to-end Delay. Hasil pengujian memperlihatkan bahwa masing-masing routing protocol yang diteliti, routing protocol AODV memiliki waktu yang lebih cepat dalam proses pengiriman packet ke node selanjutnya. Untuk jumlah paket yang terkirim routing protocol AODV lebih baik dibandingkan DSDV.


Author(s):  
Irma Nurlita Dewi ◽  
Rendy Munadi ◽  
Leanna Vidya Y.

Vehicular Ad hoc Network (VANET) merupakan konsep subset dari Mobile Ad hoc Networks (MANET) sebagai teknologi yang memungkinkan komunikasi Inter Vehicle Communication (IVC) dan Roadside-toVehicle (RVC).VANET dikarakteristikkan dengan membangun jaringan ad hoc yang dibentuk dari nodenode berupa kendaraan bermobilitas tinggi yang dibatasi dengan aturan lalu lintas sehingga pergerakannya disesuaikan dengan pola tertentu, tidak seperti MANET yang pergerakannya bisa random tanpa ada batasan. Dengan demikian, protokol routing konvensional berbasis topologi pada MANET dinilai tidak cocok untuk VANET. Protokol routing berbasis posisi sepeti GPSR dan GyTAR dinilai cocok untuk VANET. Hal ini tak lain karena aspek dinamika topologi pada VANET yang dapat berdampak nyata pada analisis protokol routing. Dari hasil simulasi diperoleh bahwa GyTAR unggul pada skenario lingkungan perkotaan dilihat dari seluruh parameter end-to-end delay, packet delivery ratio, packet loss dan normalized routing overhead yang lebih baik dari GPSR dengan rata-rata nilai masing-masing, yakni 2,294 ms, 0,958, 4,19%, dan 0,482. Sementara pada skenario lingkungan jalan tol GPSR lebih unggul dibandingkan GyTAR dengan rata-rata nilai end-to-end delay, packet delivery ratio, dan packet loss sebesar 2,639 ms, 0,920, dan 7,923%; namun dengan perolehan NRO yang lebih kecil oleh GyTAR, yakni sebesar 1,725.Kata Kunci: VANET, MANET , GPSR, GyTAR, IVC, SUMO


Author(s):  
Muhammad Riyaz Belgaum ◽  
Safee Soomro ◽  
Zainab Alansari ◽  
Muhammad Alam

<p>Mobile nodes of various routing protocols in Mobile Ad hoc Networks follow different strategies in transmission and receiving of data. Security, packet delivery and routing overhead are important concerns for any protocol during designing them. The presence and absence of malicious nodes in the network affect a lot on the performance of the protocol. This research focused on the study of the threats, attacks and reasons for malicious behavior of nodes in the network for reactive routing protocols in MANETS. DSR and AODV are the two reactive routing protocols that considered the study to propose a second chance strategy to given to the nodes considering the reason for malicious behavior to improve the packet delivery ratio and reduce the routing overhead in the network. A simulative study has conducted using Ad hoc Simulator (ASIM) considering the DSR and AODV routing protocols in the presence of malicious nodes and in the absence of malicious nodes that showed, that the packet delivery ratio is low and routing overhead is high in the absence of malicious nodes. The second chance strategy proposed considers the reasons for malicious behavior and helps the node to be reintegrate in the network to improve the packet delivery ratio and reduce the routing overhead.</p>


Sign in / Sign up

Export Citation Format

Share Document