scholarly journals Determination of Pharmaceuticals Discharged in Wastewater from a Public Hospital Using LC-MS/MS Technique

2021 ◽  
Vol 65 (1) ◽  
Author(s):  
Aracely Hernández-Ramírez ◽  
Rafael Hernández-Tenorio ◽  
Laura Hinojosa-Reyes ◽  
Norma Ramos-Delgado ◽  
Jorge Luis Guzmán-Mar

Abstract. The presence of pharmaceuticals classified as emerging contaminants (EC) in surface water, groundwater, and drinking water generates uncertainty concerning the interactions that could be occurred with aquatic organisms and living beings. Thus, the monitoring of hospital wastewater is of great importance to identify the main classes of pharmaceuticals that could be discharged to the municipal sewage system and wastewater treatment plants (WWTPs). This work described the implementation and validation of a highly selective and sensitive analytical method using solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for the detection and quantification of these emerging compounds. The solid-phase extraction (SPE) method was employed using Oasis HLB cartridges. For LC-MS/MS analysis, the chromatographic separation was conducted in a C-18 Kinetex column (Phenomenex), and detection was achieved in an AB SCIEX QTrap 3200 tandem mass spectrometer (MS/MS) in the multiple reaction monitoring (MRM) mode. The quantitative analysis was performed by using the internal standard (IS) method with isotopically labeled analogs. The implemented method presented good linearity within the concentration range of 0.1–400 µg L-1 showing correlation coefficients (R2) ranged from 0.991 to 0.999. The limits of detection (LODs) were from 0.02 to 0.59 µg L-1, while the limits of quantification (LOQs) ranged from 0.07 to 1.80 µg L-1. The analytical method was successfully applied to the analysis of wastewater samples discharged by a public hospital in San Nicolas de los Garza, Nuevo Leon, Mexico, in two sampling periods: May 2017 and March 2018.   Resumen. La presencia de fármacos, clasificados como contaminantes emergentes, en agua superficial, subterránea y potable, genera incertidumbre sobre las interacciones que podrían ocurrir con organismos acuáticos y los seres vivos. Por lo tanto, el monitoreo del agua residual hospitalaria es de gran importancia para identificar los principales productos farmacéuticos que podrían descargarse al sistema de alcantarillado municipal y por lo tanto, estar presentes en el agua a tratar en las plantas de tratamiento de agua residual (PTAR). Este trabajo describe la implementación y validación de un método analítico altamente selectivo y sensible utilizando extracción en fase sólida (SPE) y cromatografía líquida acoplada a espectrometría de masas tándem (LC-MS/MS) para la detección y cuantificación de estos compuestos emergentes. Se empleó el método de extracción en fase sólida utilizando cartuchos Oasis HLB. Para el análisis LC-MS/MS, la separación cromatográfica se realizó en una columna Kinetex C-18 (Phenomenex), y la detección se realizó en un espectrómetro de masas en tándem AB SCIEX QTrap 3200 (MS/MS) en el modo de monitoreo de reacciones múltiples (MRM). El análisis cuantitativo se llevó a cabo utilizando el método de estándar interno (IS) con análogos marcados isotópicamente. El método presentó una buena linealidad dentro del rango de concentración de 0.1 a 400 µg L-1, con coeficientes de correlación (R2) que oscilaron entre 0.991 y 0.999. Los límites de detección (LOD) fueron de 0.02 a 0.59 µg L-1, mientras que los límites de cuantificación (LOQ) variaron de 0.07 a 1.80 µg L-1. El método analítico se aplicó con éxito al análisis de muestras de agua residual vertidas por un hospital público de San Nicolás de los Garza, Nuevo León, México, en dos períodos de muestreo: mayo de 2017 y marzo de 2018.

2014 ◽  
Vol 12 (9) ◽  
pp. 928-936 ◽  
Author(s):  
Yassine Kadmi ◽  
Lidia Favier ◽  
Isabelle Soutrel ◽  
Marguerite Lemasle ◽  
Dominique Wolbert

AbstractN-nitrosamines are a new class of emerging nitrogenous drinking water disinfection by-products. These compounds are probably carcinogenic which could seriously affect the safety of drinking water consumers. The aim of this study is to develop a simple, fast, and specific analytical method for the routine determination of low part per trillion levels of N-nitrosamines in waters. An ultra high pressure liquid chromatography coupled with tandem mass spectrometry (UHPLC/MS/MS) method was developed for the qualitative and quantitative analysis of N-nitrosamines in waters. N-nitrosamines were extracted, purified and concentrated from water samples in one step using a solid-phase extraction (SPE). The compounds were detected in multiple reaction monitoring via electrospray ionisation source with positive ionisation mode. To achieve symmetrical peak shapes and a short chromatographic analysis time, the mobile phase consisting of acetonitrile, water and formic acid (60:40:0.1, v/v/v) was used in the experiment. Chromatographic separation of N-nitrosamines was done in less than two minutes. All calibration curves had good linearity (r2≥ 0.9989). The intra- and inter-day precision of the assay ranged from 0.59% to 3.11% and accuracy ranged from 99.66% to 104.1%. The mean recoveries of N-nitrosamines in spiked water were 98%-101%. The reproducability was acceptable with relative standard deviations of less than 3.53%. The proposed method yielded detection limits very low which ranges from 0.04 to 0.16 ng L−1. Finally, the developed analytical method was successfully applied to the analysis of N-nitrosamines in natural water sample


2012 ◽  
Vol 1 (11) ◽  
pp. 342-352 ◽  
Author(s):  
Mokkaisamy Jegadeesh Raja ◽  
Jegadeesh Raja Kavitha ◽  
Kothamasu Pavan Kumar ◽  
Thangavel Sivakumar

A simple, rapid, specific, sensitive and liquid chromatography coupled with tandem mass spectrophotometric method was developed and validated for the estimation of azathioprine and its metabolite 6-mercaptopurine in human plasma by using lamivudine and 6-mercaptopurine D3 as the internal standard. Azathioprine and 6-mercaptopurine were extracted from human plasma by solid-phase extraction (SPE)-Evaporation method, using Oasis MCX cartridge for cleaning procedure. The stationary phase was chromatographed on a ZORBAX SB CN, (75X50 mm, 5 µ) column where as mobile phase constitutes of acetonitrile: 2mM ammonium acetate (70:30 v/v) at a flow rate of 0.800 ml/min. The detection was performed with an Applied Biosystems Sciex API 4000 mass spectrometer by multiple reaction monitoring (MRM). The method validation proofs were carried out as per the USFDA guidelines as described, showing a linearity system (r2 > 0.99) over a range of 2.455 ng/mL to 106.568 ng/mL for azathioprine and 1.165 ng/mL to 101.143 ng/mL concentrations for 6-mercaptopurine and a recovery shows 99.36% and 100.44% for azathioprine and 6-mercaptopurine respectively. The results show that this proposed approach is effective and can be applied to the extraction and analysis of other pharmaceutical compounds.DOI: http://dx.doi.org/10.3329/icpj.v1i11.12059 International Current Pharmaceutical Journal 2012, 1(11): 342-352 


2019 ◽  
Vol 15 (7) ◽  
pp. 776-784
Author(s):  
Xiaonian Han ◽  
Jing Wang ◽  
Jing Huang ◽  
Lirong Peng

Background: As first-line treatments for diabetes, sitagliptin and metformin have been widely prescribed as a combination to enhance the therapeutic effect. Objective: To establish a methodology to simultaneously monitor the two drugs in vivo by a reversedphase Liquid Chromatography-Tandem Mass Spectrometric (LC-MS/MS) method. Methods: The two drugs were extracted from 50 μl human plasma by ion-pair solid phase extraction. The separation of the plasma samples was implemented on an Agilent Zorbax SB-CN column (150×4.6 mm, 5.0 µm). The mobile phase was the mixture (80:20, v/v) of methanol and 5.0 mM ammonium formate in water (pH 4.5). An ion trap spectrometer equipped with an electrospray ionization source was utilized to detect the elution in positive mode. Quantification of the analytes was achieved by Multiple Reaction Monitoring (MRM) using the transitions of m/z 408.3→235.1 for sitagliptin and m/z 130.1→ 60.2 for metformin. Results: Sitagliptin and metformin demonstrated good linearity among the range of 1.00-1000 ng/mL and 5.00-4000 ng/mL. The intra-day and inter-day investigations displayed precisions of ≤ 3.6% and an accuracy range of -7.5% to 6.0% for the two drugs. The mean recovery of the two drugs was 96.0% and 98.5%. Under mandatory storage conditions, both the drugs gave an acceptable stability. The throughput of the assay was found to be more than 100 plasma samples per day ascribed to the run time of 3.0 min for each sample. Conclusion: The developed method was successfully applied to a pharmacokinetic study for a fixeddose tablet formulation containing 50 mg sitagliptin and 500 mg metformin in 12 healthy volunteers.


Molecules ◽  
2021 ◽  
Vol 26 (8) ◽  
pp. 2123
Author(s):  
Luboš Fical ◽  
Maria Khalikova ◽  
Hana Kočová Vlčková ◽  
Ivona Lhotská ◽  
Zuzana Hadysová ◽  
...  

Two new ultra-high performance liquid chromatography (UHPLC) methods for analyzing 21 selected antivirals and their metabolites were optimized, including sample preparation step, LC separation conditions, and tandem mass spectrometry detection. Micro-solid phase extraction in pipette tips was used to extract antivirals from the biological material of Hanks balanced salt medium of pH 7.4 and 6.5. These media were used in experiments to evaluate the membrane transport of antiviral drugs. Challenging diversity of physicochemical properties was overcome using combined sorbent composed of C18 and ion exchange moiety, which finally allowed to cover the whole range of tested antivirals. For separation, reversed-phase (RP) chromatography and hydrophilic interaction liquid chromatography (HILIC), were optimized using extensive screening of stationary and mobile phase combinations. Optimized RP-UHPLC separation was carried out using BEH Shield RP18 stationary phase and gradient elution with 25 mmol/L formic acid in acetonitrile and in water. HILIC separation was accomplished with a Cortecs HILIC column and gradient elution with 25 mmol/L ammonium formate pH 3 and acetonitrile. Tandem mass spectrometry (MS/MS) conditions were optimized in both chromatographic modes, but obtained results revealed only a little difference in parameters of capillary voltage and cone voltage. While RP-UHPLC-MS/MS exhibited superior separation selectivity, HILIC-UHPLC-MS/MS has shown substantially higher sensitivity of two orders of magnitude for many compounds. Method validation results indicated that HILIC mode was more suitable for multianalyte methods. Despite better separation selectivity achieved in RP-UHPLC-MS/MS, the matrix effects were noticed while using both chromatographic modes leading to signal enhancement in RP and signal suppression in HILIC.


Sign in / Sign up

Export Citation Format

Share Document