Colloidal Synthesis of Complex Multicomponent Inorganic Nanocrystals

Author(s):  
Neus Bastus ◽  
Jordi Piella ◽  
Carmen Hervés ◽  
Elizaveta Demakova ◽  
Jana Oliveras ◽  
...  
Nanoscale ◽  
2021 ◽  
Author(s):  
Syed Akhil ◽  
V.G.Vasavi Dutt ◽  
Nimai Mishra

Recently lead halide perovskite nanocrystals (PNCs) have attracted intense interest as promising active materials for optoelectronic devices. However, their extensive applications are still hampered by poor stability in ambient conditions....


Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 143
Author(s):  
Melis S. Duyar ◽  
Alessandro Gallo ◽  
Samuel K. Regli ◽  
Jonathan L. Snider ◽  
Joseph A. Singh ◽  
...  

Molybdenum phosphide (MoP) catalyzes the hydrogenation of CO, CO2, and their mixtures to methanol, and it is investigated as a high-activity catalyst that overcomes deactivation issues (e.g., formate poisoning) faced by conventional transition metal catalysts. MoP as a new catalyst for hydrogenating CO2 to methanol is particularly appealing for the use of CO2 as chemical feedstock. Herein, we use a colloidal synthesis technique that connects the presence of MoP to the formation of methanol from CO2, regardless of the support being used. By conducting a systematic support study, we see that zirconia (ZrO2) has the striking ability to shift the selectivity towards methanol by increasing the rate of methanol conversion by two orders of magnitude compared to other supports, at a CO2 conversion of 1.4% and methanol selectivity of 55.4%. In situ X-ray Absorption Spectroscopy (XAS) and in situ X-ray Diffraction (XRD) indicate that under reaction conditions the catalyst is pure MoP in a partially crystalline phase. Results from Diffuse Reflectance Infrared Fourier Transform Spectroscopy coupled with Temperature Programmed Surface Reaction (DRIFTS-TPSR) point towards a highly reactive monodentate formate intermediate stabilized by the strong interaction of MoP and ZrO2. This study definitively shows that the presence of a MoP phase leads to methanol formation from CO2, regardless of support and that the formate intermediate on MoP governs methanol formation rate.


2016 ◽  
Vol 40 (12) ◽  
pp. 10259-10266 ◽  
Author(s):  
N. Ntholeng ◽  
B. Mojela ◽  
S. Gqoba ◽  
M. Airo ◽  
S. Govindraju ◽  
...  

The determination of the order of precursor addition based on the HSAB theory in the synthesis of pure CuInTe2 particles.


Small ◽  
2013 ◽  
Vol 9 (22) ◽  
pp. 3765-3769 ◽  
Author(s):  
Shi-Kui Han ◽  
Chao Gu ◽  
Ming Gong ◽  
Ze-Ming Wang ◽  
Shu-Hong Yu
Keyword(s):  

2009 ◽  
Vol 67 ◽  
pp. 191-196 ◽  
Author(s):  
Lubna Hashmi ◽  
M.S. Qureshi ◽  
R.N. Dubey ◽  
M.M. Malik ◽  
Ishrat Alim ◽  
...  

A broad range of II-VI materials has been investigated in order to produce light in the full visible range for optoelectronic applications. The present investigation was carried out for the spectroscopic analysis and synthesis of wide band gap cadmium sulfide nanoparticles. Large-band gap semiconductors have the added advantage in that; they can support higher electric field before breaking down, which means that they can be used for high-power electronic devices.Synthesis has been carried out using colloidal synthesis technique at low temperature. The size, stabilization and optical properties were studied using UV-vis Spectrophotometer and Spectroflourometer. Further, the structural studies of synthesized powder were carried out using X-ray diffraction technique; which also confirms the formation of desired product. The capping ligand and the impurities present in the sample were characterized by Fourier transform infra red spectroscopy. Synthesized CdS powder dispersed in aqueous media gave the value of 193 nm for the onset wavelength using UV-vis spectrophotometer, which is significantly blue-shifted compared to bulk CdS and shows the quantum confinement effect. From the onset wavelength the radius of CdS quantum dot calculated using the Brus equation was found to be ca. 0.7 nm.


2014 ◽  
Vol 976 ◽  
pp. 52-58 ◽  
Author(s):  
Janeth Sarmiento Arellano ◽  
Enrique Rosendo ◽  
Román Romano ◽  
Gabriela Nieto ◽  
Tomás Díaz ◽  
...  

A comparative study of the synthesis of cadmium selenide (CdSe) nanoparticles (NPs) using different cadmium precursors such as, cadmium nitrate (Cd (NO3)2·4H2O), cadmium acetate ((CH3COO)2Cd·2H2O) and cadmium chloride (CdCl2·2.5H2O) is presented in this work. The method used to obtain the CdSe NPs was the colloidal synthesis at low temperature and atmospheric pressure. The Cd2+ ions were obtained in aqueous solution at room temperature, the surfactant used in the process was an aqueous solution of sodium hydroxide (NaOH), penta-sodium tripolyphosphate and H2O named commonly extran, which not only helps to stabilize the NPs, but also allows adjusting the pH of the solution. Se2- ions were obtained with sodium borohydride (NaBH4) as reductant at 75 oC. The by-products from the reaction were eliminated through a cleaning process with hydrochloric acid (HCl). Molar concentration of Cd:Se was varied from 3:1 to 1:3 and the pH value was varied between 8 and 11. The obtained samples were characterized by X-ray diffraction (XRD), it was seen that the obtained NPs present cubic centered face structure. The crystallite size from the powder was calculated using the Debye-Scherrer equation and was found between 3.3 nm and 5.6 nm, the variation in size depends on the molar concentration of cadmium and selenium. Morphological study was done using scanning electron microscopy (SEM) and compositional analysis was done by energy dispersive x-ray analysis (EDAX).


2013 ◽  
Vol 100 ◽  
pp. 166-169 ◽  
Author(s):  
Yongsheng Ma ◽  
Mu Gu ◽  
Shiming Huang ◽  
Xiaolin Liu ◽  
Bo Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document