scholarly journals Super Hydrophilic Surface Fabricated on Alumina Ceramic by Ultra-fast Laser Microprocessing

2017 ◽  
Vol 32 (7) ◽  
pp. 731 ◽  
Author(s):  
XIE Yu-Zhou ◽  
PENG Chao-Qun ◽  
WANG Xiao-Feng ◽  
WANG Ri-Chu ◽  
LUO Feng

2018 ◽  
pp. 15-27 ◽  
Author(s):  
V. A. Gribkov ◽  
◽  
A. S. Demin ◽  
N. A. Epifanov ◽  
E. E. Kazilin ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 212
Author(s):  
Ming-Jun Liao ◽  
Li-Qiang Duan

The influence of different wettability on explosive boiling exhibits a significant distinction, where the hydrophobic surface is beneficial for bubble nucleation and the hydrophilic surface enhances the critical heat flux. Therefore, to receive a more suitable surface for the explosive boiling, in this paper a hybrid hydrophobic–hydrophilic nanostructured surface was built by the method of molecular dynamics simulation. The onset temperatures of explosive boiling with various coating thickness, pillar width, and film thicknesses were investigated. The simulation results show that the hybrid nanostructure can decrease the onset temperature compared to the pure hydrophilic surface. It is attributed to the effect of hydrophobic coating, which promotes the formation of bubbles and causes a quicker liquid film break. Furthermore, with the increase of the hydrophobic coating thickness, the onset temperature of explosive boiling decreases. This is because the process of heat transfer between the liquid film and the hybrid nanostructured surface is inevitably enhanced. In addition, the onset temperature of explosive boiling on the hybrid wetting surface decreases with the increase of pillar width and liquid film thickness.


2021 ◽  
pp. 2001475
Author(s):  
Ying Sun ◽  
Ming Li ◽  
Yanlin Jiang ◽  
Bohang Xing ◽  
Minhao Shen ◽  
...  

2021 ◽  
Author(s):  
Hailong Yan ◽  
Jinbing Cheng ◽  
Zuxue Bai ◽  
Tao Peng ◽  
Jang-Kyo Kim ◽  
...  

MXenes have received great attention due to their excellent performance such as metal-like electronic conductivity, hydrophilic surface groups, and high volumetric capacitance. However, many performances of MXenes are still unsatisfied...


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 81
Author(s):  
Yanhua Zou ◽  
Ryunosuke Satou ◽  
Ozora Yamazaki ◽  
Huijun Xie

High quality, highly efficient finishing processes are required for finishing difficult-to-machine materials. Magnetic abrasive finishing (MAF) process is a finishing method that can obtain a high accuracy surface using fine magnetic particles and abrasive particles, but has poor finishing efficiency. On the contrary, fixed abrasive polishing (FAP) is a polishing process can obtain high material removal efficiency but often cannot provide a high-quality surface at the nano-scale. Therefore, this work proposes a new finishing process, which combines the magnetic abrasive finishing process and the fixed abrasive polishing process (MAF-FAP). To verify the proposed methodology, a finishing device was developed and finishing experiments on alumina ceramic plates were performed. Furthermore, the mechanism of the MAF-FAP process was investigated. In addition, the influence of process parameters on finishing characteristics is discussed. According to the experimental results, this process can achieve high-efficiency finishing of brittle hard materials (alumina ceramics) and can obtain nano-scale surfaces. The surface roughness of the alumina ceramic plate is improved from 202.11 nm Ra to 3.67 nm Ra within 30 min.


Sign in / Sign up

Export Citation Format

Share Document