scholarly journals Characterization of Algae Removal in a Fluidized Bed Biofilm Reactor System for Lake Water Treatment.

1998 ◽  
Vol 21 (4) ◽  
pp. 217-223 ◽  
Author(s):  
Tetsuya TANAKA ◽  
Koichi TSUZUKI ◽  
Noriyo NISHIJIMA ◽  
Takeo TAKAGI ◽  
Katsuji TERAZONO
2001 ◽  
Vol 43 (1) ◽  
pp. 277-283 ◽  
Author(s):  
T. Tanaka ◽  
K. Tsuzuki ◽  
N. Nishijima ◽  
T. Takagi

The algae removal efficiency of a pilot plant – based on a fluidized-bed biofilm reactor system for treating – was investigated. This system does not require back-washing because the fluidized-bed suffers no clogging. Moreover, the system uses dissolved oxygen in the influent water for aerobic biological treatment without the need for additional aeration equipment. This, it is an easy-maintenance, low-energy system for purifying eutrophic lake water. The system was operated continuously at a flow rate of 1500 m3/d for nine months at Tsuchiura Port in Lake Kasumigaura. And concentrations of chlorophyll-a and dissolved oxygen in both the influent and effluent water were continuously monitored. In summer (August to September) when water bloom occurred, the average efficiency of chlorophyll-a removal was 64% at an average influent chlorophyll-a concentration of 137.8 μg/L. Over the entire experimental period of nine months, the average daily amount of removed chlorophyll-a was 40.3 g/d at an average influent chlorophyll-a concentration of 89.5 μg/L. By analyzing the relationship between the amount of removed chlorophyll-a and the consumption of dissolved oxygen, it was estimated that almost all of the algae trapped in the reactor was biologically degraded.


1999 ◽  
Vol 22 (5) ◽  
pp. 389-395 ◽  
Author(s):  
Noriyo NISHIJIMA ◽  
Tetsuya TANAKA ◽  
Kouichi TSUZUKI ◽  
Takeo TAKAGI

1994 ◽  
Vol 30 (11) ◽  
pp. 101-110
Author(s):  
Toshiaki Tsubone ◽  
Seiichi Kanamori ◽  
Tatsuo Takechi ◽  
Masahiro Takahashi

A pilot scale study was conducted using an Air-Fluidized-Bed Biofilm Reactor (AFBBR) system with a Multi Media Filter (MMF). Soluble BOD (S-BOD) concentration in the effluent of the AFBBR had a correlation with total BOD (T-BOD) and Suspended Solids (SS) concentration in the effluent of the MMF. The lower the S-BOD in the effluent of the AFBBR was, the lower was not only T-BOD but also SS in the effluent of the MMF. It was found that as treatment proceeded, S-BOD was removed and the particle size of SS increased in the AFBBR. These results suggested that the mechanism of BOD removal in this system was: S-BOD was removed and a part of the S-BOD was changed to SS and the particle size of the SS increased in the AFBBR, and then the SS was removed by the MMF. Thus not only the T-BOD but also the SS in the effluent of MMF was lower when the S-BOD in the effluent of the AFBBR was lower. When the S-BOD in the effluent of the AFBBR was 8mg/L, T-BOD and the SS in the effluent of the MMF were 10mg/L and 4mg/L, respectively. In order to have an average S-BOD value in the effluent of the AFBBR of about 8mg/L, the T-BOD loading and the S-BOD loading needed to be less than 1.3kg/m3/day and 0.45 kg/m3/day, respectively. Even when the BOD loading was high, nitrification still occurred in this system.


2013 ◽  
Vol 13 (5) ◽  
pp. 1220-1227 ◽  
Author(s):  
R. H. Peiris ◽  
M. Jaklewicz ◽  
H. Budman ◽  
R. L. Legge ◽  
C. Moresoli

The application of the fluorescence excitation-emission matrix (EEM) approach and liquid chromatography–organic carbon detection (LC–OCD) analysis for the characterization of hydraulically reversible and irreversible fouling species, extracted from hollow fiber ultrafiltration (UF) membranes used in drinking water treatment, was demonstrated. Hydraulically reversible and irreversible fouling species were extracted from two pilot UF membrane systems operated in parallel with lake water as the feed. Two membrane cleaning protocols, hydraulic- and chemical-based (NaOCl and citric acid) cleaning, were considered. Colloidal/particulate matter together with protein-like and metal species in water appeared to contribute to the formation of a hydraulically removable fouling layer on the membranes. Hydraulically irreversible fouling, in contrast, was impacted considerably by humic substances (HS) and protein-like matter. The formation of an irreversible fouling layer was also likely influenced by interactions between the colloidal/particulate matter and metal species together with HS and protein-like matter. LC–OCD analysis revealed the presence of predominant levels of lower molecular weight HS-like matter – compared to the HS-like matter commonly present in lake water – in the citric acid extracted foulant fraction. The permeability loss due to hydraulically irreversible UF fouling was considerably greater than the permeability loss due to hydraulically reversible UF fouling. A permanent permeability loss (∼25–35% of the initial permeability) was present even after the application of considerably strong chemical cleaning protocols on both pilot systems. This study indicated that the fluorescence EEM approach can be applied for monitoring and characterization of membrane cleaning procedures and as a potential diagnostic tool for assessing the effectiveness of hydraulic- and chemical-based cleaning protocols employed in UF drinking water treatment operations using rapid off-line measurements. On the other hand, since the LC–OCD analysis technique is a comparatively time consuming method, it may be used for verification of the fluorescence EEM-based results of the foulant fractions.


2018 ◽  
Vol 18 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Kwang-Hee Lee ◽  
◽  
Min-Ho Kim ◽  
Nam-Woo An ◽  
Chul-hwi Park

2017 ◽  
Vol 16 (10) ◽  
pp. 2303-2315 ◽  
Author(s):  
Djamel Ghernaout ◽  
Abdelmalek Badis ◽  
Ghania Braikia ◽  
Nadjet Mataam ◽  
Moussa Fekhar ◽  
...  

1989 ◽  
Vol 21 (4-5) ◽  
pp. 157-165 ◽  
Author(s):  
F. Ehlinger ◽  
J. M. Audic ◽  
G. M. Faup

The characterization of the biofilm of an anaerobic fluidized-bed reactor was completed under standard conditions. The distribution of the fixed protein concentration depended on the level in the reactor. The protein concentration reached 1520 µg.g−1 of support at the top of the reactor and only 1200 µg.g−1 at the bottom after 504 hours of operation but the specific activity of the biofilm was 33×10−4 µM acetate.h−1.mg−1 proteins at the bottom and only 26×10−4 µM.h−1.mg−1 at the top. The efficiency of a fluidized bed reactor and the composition of the biofilm changed with an increase of the pH from 7 to 8.5 during the seeding of the support material. Future development of the biofilm and the specific activity of the support were affected.


Sign in / Sign up

Export Citation Format

Share Document