scholarly journals Lignocellulosic Analysis of Corncob Biomass by Using Non-Thermal Pulsed Electric Field-NaOH Pretreatment

Author(s):  
A W Putranto ◽  
S H Abida ◽  
K Adrebi
REAKTOR ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 183-191
Author(s):  
Angky Wahyu Putranto ◽  
Sakinah Hilya Abida ◽  
Khodijah Adrebi ◽  
Arta Harianti

In recent years, the second-generation bioethanol and advanced bio-based material production from biomass are focused on the pretreatment process by separating cellulose components from other components such as lignin and hemicellulose. Therefore, a physicochemical pretreatment method is needed by applying a non-thermal pulsed electric field (PEF) and alkali methods to increase the cellulose availabilities with a short process and low energy input. The aim of this study was to analyze the lignocellulose content of corncob biomass by using non-thermal pulsed electric fields (PEF) and NaOH pretreatment. The pretreatment factors used were the electric field strength of PEF and the pretreatment time. Analysis of the structure and elements of the lignocellulose based on the characteristics of the gravimetric method and SEM-EDX for untreated and treated samples. The results showed that pretreatment of corncobs biomass by using PEF optimally at an electric field strength of 9 kV/cm and pretreatment time of 60 seconds that was increasing cellulose of 40.59% when compared with the control and also decreasing the hemicellulose and lignin content of 12.9% and 2.02%, respectively. Under these conditions, the energy per pulse and specific input energy of PEF required 0.0205 J and 8.72 kJ/L, respectively. The microstructure analysis by using SEM-EDX showed significantly visual differences and was an increase in the percentage of C and O atoms between untreated and treated corncob biomass. Furthermore, the corncob biomass treated by using non-thermal PEF and alkali can become effective and efficient for the next process into cellulose-derived products.Keywords: corncob biomass; pulsed electric field; NaOH; pretreatment; cellulose


2013 ◽  
Vol 133 (2) ◽  
pp. 32-37 ◽  
Author(s):  
Akira Nakagawa ◽  
Hitoshi Hatayama ◽  
Koichi Takaki ◽  
Shoji Koide ◽  
Yukio Kawamura

2015 ◽  
pp. 758-760
Author(s):  
Romain Delecourt ◽  
Loïc Marsal

Maguin (France) is still active in the application of pulsed electric field (PEF) technology. After having carried out successful tests on a 10 t/h pilot screw-type machine on sugar beet cossettes, a new application system based on a roller technology has been developed. This technology allows a wide range of application due to its flexibility with flowrates and materials. A variety of process schemes are proposed to ensure the best performance of the PEF technology.


LWT ◽  
2019 ◽  
Vol 116 ◽  
pp. 108515 ◽  
Author(s):  
Chunsen Wu ◽  
Qiu-Yan Wu ◽  
Mangang Wu ◽  
Wei Jiang ◽  
Jian-Ya Qian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document