scholarly journals CO2 Corrosion Behaviors of Tubing and Casing Steels in Simulation Produced Water for Deep Natural Gas Wells

Author(s):  
Nan Li ◽  
Dekui Xu ◽  
Wenhai Ma ◽  
Pingang Ma ◽  
Junliang Li
2017 ◽  
Vol 1 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Kathryn Bills Walsh

This case presents the stakeholder conflicts that emerge during the development and subsequent reclamation of abandoned natural gas wells in Wyoming where split estate, or the separation of surface land and mineral rights from one another, occurs. From 1998 to 2008, the Powder River Basin of northeastern Wyoming experienced an energy boom as a result of technological innovation that enabled the extraction of coalbed methane (CBM). The boom resulted in over 16,000 wells being drilled in this 20,000 square-mile region in a single decade. As of May 2017, 4,149 natural gas wells now sit orphaned in Wyoming as a result of industry bankruptcy and abandonment. The current orphaned wells crisis was partially enabled by the patchwork of surface and mineral ownership in Wyoming that is a result of a legal condition referred to as split estate. As the CBM boom unfolded in this landscape and then began to wane, challenges emerged most notably surrounding stalled reclamation activities. This case illuminates these challenges highlighting two instances when split estate contributed to issues between landowners and industry operators which escalated to litigation.


2000 ◽  
Vol 41 (10-11) ◽  
pp. 117-123 ◽  
Author(s):  
C. Visvanathan ◽  
P. Svenstrup ◽  
P. Ariyamethee

This paper presents a case study of a natural gas production site covering various technical issues related to selection of an appropriate Reverse Osmosis (RO) system. The long-term field experience indicates the necessity of the selection of appropriate pretreatment systems for fouling-free RO operational conditions. The produced water has a variety of impurities such as oil and grease, process chemicals used for corrosion and scaling control, and dehydration of natural gas, etc. This situation leads to a complicated and extremely difficult task for a membrane specialist to design RO systems, especially the pre-treatment section. Here as part of the pretreatment selection, two types of UF membrane modules viz. spiral wound and hollow fibre, with MWCO of 8000 and 50,000 Dalton respectively, were tested in parallel with NF membranes of the spiral wound type with MWCO 200 Dalton. The UF permeate is used as feed for RO compatibility testing. Both configurations of UF failed to be compatible, due to irreversible fouling of the RO membrane. The NF membrane, however, showed interesting results, due to membrane stability in terms of cleaning and fouling. The NF plant with 50% capacity gave a recovery of 75% and the RO plant gave a recovery of 60% versus the expected 92–95%. The long-term tests have indicated that the reminder of the membranes could be installed to achieve full capacity of the plant. This study also demonstrates the importance of selection of proper pre-treatment set-up for the RO system design.


2014 ◽  
Author(s):  
K.. Francis-LaCroix ◽  
D.. Seetaram

Abstract Trinidad and Tobago offshore platforms have been producing oil and natural gas for over a century. Current production of over 1500 Bcf of natural gas per year (Administration, 2013) is due to extensive reserves in oil and gas. More than eighteen of these wells are high-producing wells, producing in excess of 150 MMcf per day. Due to their large production rates, these wells utilize unconventionally large tubulars 5- and 7-in. Furthermore, as is inherent with producing gas, there are many challenges with the production. One major challenge occurs when wells become liquid loaded. As gas wells age, they produce more liquids, namely brine and condensate. Depending on flow conditions, the produced liquids can accumulate and induce a hydrostatic head pressure that is too high to be overcome by the flowing gas rates. Applying surfactants that generate foam can facilitate the unloading of these wells and restore gas production. Although the foaming process is very cost effective, its application to high-producing gas wells in Trinidad has always been problematic for the following reasons: Some of these producers are horizontal wells, or wells with large deviation angles.They were completed without pre-installed capillary strings.They are completed with large tubing diameters (5.75 in., 7 in.). Recognizing that the above three factors posed challenges to successful foam applications, major emphasis and research was directed toward this endeavor to realize the buried revenue, i.e., the recovery of the well's potential to produce natural gas. This research can also lead to the application of learnings from the first success to develop treatment for additional wells, which translates to a revenue boost to the client and the Trinidad economy. Successful treatments can also be used as correlations to establish an industry best practice for the treatment of similarly completed wells. This paper will highlight the successes realized from the treatment of three wells. It will also highlight the anomalies encountered during the treatment process, as well as the lessons learned from this treatment.


2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Jie Zhang ◽  
Hao Yi ◽  
Zhuo Huang ◽  
Jiadai Du

With the deepening of natural gas exploitation, the problem of sand production in gas wells is becoming more and more serious, especially in high-yield gas wells. The solid particles in natural gas are very likely to cause erosion and wear of downstream pipelines and throttling manifolds, which makes the pipeline ineffective. Once the pipeline is damaged, the natural gas leaks, which may cause serious catastrophic accidents. In this paper, the impact of sand particles on the pipeline wall is predicted by the analysis of the research on bent and continuous pipeline combined with particle collision model. The parameters of different particles (particle shape factor, particle velocity, and particle diameter), different bent parameters (angle, diameter, and curvature-to-diameter ratio), and the influence of different continuous pipeline parameters (assembly spacing and angle) are explored on the erosion and wear mechanism of curved pipeline. The results show that the shape of the particles has a great influence on the wear of the curved pipeline. As the shape factor of the particles decreases, the wear tends to decrease. The bent area is subject to erosion changes as the particle parameters and piping parameters. The increase in pipeline diameter is beneficial to reduce the maximum and the average erosion wear rate. When the bent angle of the pipeline is less than 90 deg, the maximum erosion wear rate is basically the same. But when it is greater than 90 deg, it decreases with the increase in the bent angle. When the assembly angle of double curved pipeline is between 0 deg and 60 deg, the elbow is subject to severe erosion wear. At the same time, increasing the assembly spacing is beneficial to reduce the erosion wear rate. The research can provide a theoretical support for subsequent engineering applications.


Sign in / Sign up

Export Citation Format

Share Document